658
Views
0
CrossRef citations to date
0
Altmetric
Technical Papers

High-Order Accurate Solutions of the Point Kinetics Equations with the Spectral Deferred Correction Method

ORCID Icon & ORCID Icon
Pages 1364-1385 | Received 02 May 2022, Accepted 13 Dec 2022, Published online: 03 Apr 2023

References

  • A. J. HOFFMAN, “A Time-Dependent Method of Characteristics Formulation with Time Derivative Propagation,” PhD Thesis, Nuclear Engineering & Radiological Sciences University of Michigan.
  • A. ZHU, Y. XU, and T. DOWNAR, “A Multilevel Quasi-Static Kinetics Method for Pin-Resolved Transport Transient Reactor Analysis,” Nucl. Sci. Eng., 182, 4, 435 (2016); https://doi.org/10.13182/NSE15-39.
  • Q. SHEN et al., “Transient Multilevel Scheme with One-Group CMFD Acceleration,” Nucl. Sci. Eng., 195, 7, 741 (2021); https://doi.org/10.1080/00295639.2020.1866388.
  • T. Downar, Y. Xu, and V. Seker, “PARCS v3. 0 U.S. NRC Core Neutronics Simulator Theory Manual,” University of Michigan, Department of Nuclear Engineering and Radiological Sciences (2009).
  • Y. BAN, T. ENDO, and A. YAMAMOTO, “A Unified Approach for Numerical Calculation of Space-Dependent Kinetic Equation,” J. Nucl. Sci. Technol., 49, 5, 496 (2012); https://doi.org/10.1080/00223131.2012.677126.
  • J.-Y. CHO et al., “Transient Capability for a MOC-Based Whole Core Transport Code DeCART,” Trans. Am. Nucl. Soc., p. 2, American Nuclear Society 92, 721–722 (2015).
  • C. B. SHIM et al., “Application of Backward Differentiation Formula to Spatial Reactor Kinetics Calculation with Adaptive Time Step Control,” Nucl. Eng. Technol., 43 6, 16 (2011).
  • Z. ZHANG and Y. CAI, “A Numerical Solution to the Point Kinetic Equations Using Diagonally Implicit Runge Kutta Method,” Proc. Int. Conf. on Nuclear Engineering, p. V001T02A001, American Society of Mechanical Engineers (2016); https://doi.org/10.1115/ICONE24-60011.
  • A. J. HOFFMAN and J. C. LEE, “A Time-Dependent Neutron Transport Method of Characteristics Formulation with Time Derivative Propagation,” J. Comput. Phys., 306, 696, (2016) https://doi.org/10.1016/j.jcp.2015.10.039.
  • D. BEYLKIN, “Spectral Deferred Corrections for Parabolic Partial Differential Equations,” Technical Report, Yale University (2015).
  • A. DUTT, L. GREENGARD, and V. ROKHLIN, “Spectral Deferred Correction Methods for Ordinary Differential Equations,” BIT Numer. Math., 40, 2, 241 (2000); https://doi.org/10.1023/A:1022338906936.
  • K. BÖHMER and H. STETTER, Defect Correction Methods, Vol. 5 of Computing Supplementum, Springer (1984); https://doi.org/10.1007/978-3-7091-7023-6.
  • Y. CAI et al., “Parallel Computation of the Point Neutron Kinetic Equations Using Parallel Revisionist Integral Deferred Correction,” Proc. 2018 26th Int. Conf. on Nuclear Engineering, p. V003T02A010, American Society of Mechanical Engineers, London, England (2018); https://doi.org/10.1115/ICONE26-81205.
  • Y. CAI, Q. LI, and K. WANG, “A Numerical Solution to the Point Kinetic Equations Using Spectral Deferred Correction,” Trans. Am. Nucl. Soc., 111, 734 (2014).
  • M. L. MINION, “Semi-implicit Spectral Deferred Correction Methods for Ordinary Differential Equations,” Commun. Math. Sci., 1, 3, 471 (2003); https://doi.org/10.4310/cms.2003.v1.n3.a6.
  • M. M. CROCKATT et al., “An Arbitrary-Order, Fully Implicit, Hybrid Kinetic Solver for Linear Radiative Transport Using Integral Deferred Correction,” J. Comput. Phys., 346, 212 (2017); https://doi.org/10.1016/j.jcp.2017.06.017.
  • D. Z. HUANG et al., “High-Order Partitioned Spectral Deferred Correction Solvers for Multiphysics Problems,” J. Comput. Phys., 412, 109441 (2020); https://doi.org/10.1016/j.jcp.2020.109441.
  • B. KOCHUNAS et al., “VERA Core Simulator Methodology for Pressurized Water Reactor Cycle Depletion,” Nucl. Sci. Eng., 185, 1, 217 (2017); https://doi.org/10.13182/NSE16-39.
  • K. O. OTT and R. J. NEUHOLD, Introductory Nuclear Reactor Dynamics, American Nuclear Society, (1985).
  • Q. SHEN, “Robust and Efficient Methods in Transient Whole-Core Neutron Transport Calculations,” PhD Thesis, Nuclear Engineering & Radiological Sciences University of Michigan (2021).
  • H. FINNEMANN and A. GALATI, “NEACRP 3-D LWR Core Transient Benchmark,” Technical Report NEACRP-L-355, Nuclear Energy Agency (Jan. 1992).
  • L. GREENGARD, “Spectral Integration and Two-Point Boundary Value Problems,” SIAM J. Numer. Anal., 28, 4, 1071 (1991); https://doi.org/10.1137/0728057.
  • M. F. CAUSLEY and D. C. SEAL, “On the Convergence of Spectral Deferred Correction Methods,” Commun. Appl. Math. Comput. Sci, 14, 1, 33 (2019); https://doi.org/10.2140/CAMCOS.2019.14.33.
  • M. MINION, “A Hybrid Parareal Spectral Deferred Corrections Method,” Commun. Appl. Math. Comput. Sci, 5, 2, 265 (2011); https://doi.org/10.2140/camcos.2010.5.265.
  • R. SPECK et al., “A Multi-level Spectral Deferred Correction Method,” BIT Numer. Math, 55, 3, 843 (2015); https://doi.org/10.1007/s10543-014-0517-x.
  • A. ZHU, “Transient Methods for Pin-Resolved Whole-Core Neutron Transport,” PhD Thesis, Nuclear Engineering & Radiological Sciences University of Michigan (2016).
  • T. HAGSTROM and R. ZHOU, “On the Spectral Deferred Correction of Splitting Methods for Initial Value Problems,” Commun. Appl. Math. Comput. Sci, 1, 1, 169 (2006); https://doi.org/10.2140/camcos.2006.1.169.
  • J. HUANG, J. JIA, and M. MINION, “Accelerating the Convergence of Spectral Deferred Correction Methods,” J. Comput. Phys., 214, 2, 633 (2006); https://doi.org/10.1016/j.jcp.2005.10.004.
  • A. T. GODFREY, “VERA Core Physics Benchmark Progression Problem Specifications,” Technical Report 793, Consortium for Advanced Simulation of Light Water Reactors (2014).
  • A. GRAHAM et al., “Assessment of Thermal-Hydraulic Feedback Models,” Proc. PHYSOR 2016: Unifying Theory and Experiments in the 21st Century, 6, 3616, Sun Valley, Idaho (2016).
  • K. S. KIM et al., “Development of the Multigroup Cross Section Library for the CASL Neutronics Simulator MPACT: Verification,” Ann. Nucl. Energy, 132, 1 (2019); https://doi.org/10.1016/j.anucene.2019.03.041.