665
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Analysis of the Operational and Safety Features of the In-Core Bubbling System of the Molten Salt Fast Reactor

, & ORCID Icon
Pages 1288-1307 | Received 06 Feb 2023, Accepted 14 Aug 2023, Published online: 16 Oct 2023

References

  • M. TIBERGA et al., “Preliminary Investigation on the Melting Behavior of a Freeze-Valve for the Molten Salt Fast Reactor,” Ann. Nucl. Energy, 132, 544 (2019); http://dx.doi.org/10.1016/j.anucene.2019.06.039.
  • B. R. BETZLER et al., “Modeling and Simulation Functional Needs for Molten Salt Reactor Licensing,” Nucl. Eng. Des., 355, 110308 (2019); http://dx.doi.org/10.1016/j.nucengdes.2019.110308.
  • S. DELPECH et al., “Reactor Physic and Reprocessing Scheme for Innovative Molten Salt Reactor System,” J. Fluorine Chem., 130, 1, 11 (2009); http://dx.doi.org/10.1016/j.jfluchem.2008.07.009.
  • H. B. ANDREWS et al., “Review of Molten Salt Reactor Off-Gas Management Considerations,” Nucl. Eng. Des., 385, 111529 (2021); https://doi.org/10.1016/j.nucengdes.2021.111529.
  • Z. TAYLOR et al., “Implementation of Two-Phase Gas Transport into VERA for Molten Salt Reactor Analysis,” Ann. Nucl. Energy, 165, 108672 (2022); http://dx.doi.org/10.1016/j.anucene.2021.108672.
  • E. CERVI et al., “Multiphysics Analysis of the MSFR Helium Bubbling System: A Comparison Between Neutron Diffusion, SP3 Neutron Transport and Monte Carlo Approaches,” Ann. Nucl. Energy, 132, 227 (2019); http://dx.doi.org/10.1016/j.anucene.2019.04.029.
  • M. AUFIERO et al., “An Extended Version of the SERPENT-2 Code to Investigate Fuel Burn-Up and Core Material Evolution of the Molten Salt Fast Reactor,” J. Nucl. Mater., 441, 1, 473 (2013); https://doi.org/10.1016/j.jnucmat.2013.06.026.
  • F. CARUGGI et al., “Multiphysics Modelling of Gaseous Fission Products in the Molten Salt Fast Reactor,” Nucl. Eng. Des., 392, 111762 (2022); http://dx.doi.org/10.1016/j.nucengdes.2022.111762.
  • C. TRIPODO, S. LORENZI, and A. CAMMI, “Definition of Model-Based Control Strategies for the Molten Salt Fast Reactor Nuclear Power Plant,” Nucl. Eng. Des., 373, 111015 (2021); http://dx.doi.org/10.1016/j.nucengdes.2020.111015.
  • A. CAMMI et al., “Transfer Function Modeling of Zero-Power Dynamics of Circulating Fuel Reactors,” J. Eng. Gas Turbines Power, 133, 5 (2010); http://dx.doi.org/10.1115/1.4002880.
  • C. FIORINA et al., “Modelling and Analysis of the MSFR Transient Behaviour,” Ann. Nucl. Energy, 64, 485 (2014); http://dx.doi.org/10.1016/j.anucene.2013.08.003.
  • E. CERVI et al., “An Euler-Euler Multiphysics Solver for the Analysis of the Helium Bubbling System in the MSFR,” Proc. 26th Int. Conf. Nuclear Energy for New Europe (NENE 2017), Bled, Slovenia, September 11–14, 2017, p. 202.1, Nuclear Society of Slovenia (2017).
  • E. CERVI et al., “Development of a Multiphysics Model for the Study of Fuel Compressibility Effects in the Molten Salt Fast Reactor,” Chem. Eng. Sci., 193, 379 (2019); http://dx.doi.org/10.1016/j.ces.2018.09.025.
  • H. WELLER et al., “A Tensorial Approach to Computational Continuum Mechanics Using Object Orientated Techniques,” Comput. Phys., 12, 620 (1998); http://dx.doi.org/10.1063/1.168744.
  • J. SERP et al., “The Molten Salt Reactor (MSR) in Generation IV: Overview and Perspectives,” Prog. Nucl. Energy, 77, 308 (2014); http://dx.doi.org/10.1016/j.pnucene.2014.02.014.
  • M. ALLIBERT et al. “7 – Molten Salt Fast Reactors,” Handbook of Generation IV Nuclear Reactors, Woodhead Publishing Series in Energy, p. 157, I. L. PIORO, Ed., Woodhead Publishing; https://doi.org/10.1016/B978-0-08-100149-3.00007-0.
  • E. CERVI et al., “Development of an SP3 Neutron Transport Solver for the Analysis of the Molten Salt Fast Reactor,” Nucl. Eng. Des., 346, 209 (2019); http://dx.doi.org/10.1016/j.nucengdes.2019.03.001.
  • J. LEPPÄNEN et al., “The Serpent Monte Carlo Code: Status, Development and Applications in 2013,” Ann. Nucl. Energy, 82, 142 (2015); http://dx.doi.org/10.1016/j.anucene.2014.08.024.
  • A. SANTAMARINA et al., “The JEFF-3.1.1 Nuclear Data Library. Validation Results from JEF-2.2 to JEFF-3.1.1,” OECD 2009 NEA No. 6807, Organisation for Economic Co-operation and Development, Nuclear Energy Agency (2009).
  • H. RUSCHE, “Computational Fluid Dynamics of Dispersed Two-Phase Flows at High Phase Fractions,” PhD Thesis, Imperial College London, University of London (2002).
  • A. GHIONE, “Development and Validation of a Two-Phase CFD Model Using OpenFOAM,” Master’s Thesis, Royal Institute of Technology (2012).
  • L. SCHILLER and A. NAUMANN, “Über die grundlegenden Berechnungen bei der Schwerkraftaufbereitung,” Z. Ver. Dtscher. Ing., 77, 12, 318 (1933).
  • W. E. RANZ and W. R. MARSHALL, “Evaporation from Drops. Parts I & II,” Chem. Eng. Prog., 48, 142 (1952).
  • E. CERVI, “An Innovative Multiphysics Modelling Approach for the Analysis and the Development of the Generation IV Molten Salt Fast Reactor,” PhD Thesis, Politecnico di Milano (2020).
  • R. T. LAHEY, “The Simulation of Multidimensional Multiphase Flows,” Nucl. Eng. Des., 235, 10, 1043 (2005); https://doi.org/10.1016/j.nucengdes.2005.02.020.
  • R. KEDL and A. HOUTZEEL, “Development of a Model for Computing 135Xe Migration in the MSRE,” Oak Ridge National Laboratory (1967).
  • R. HIGBIE, “The Rate of Absorption of a Pure Gas into a Still Liquid During Short Periods of Exposure,” Trans. AIChE, 31, 365 (1935).
  • F. PEEBLES, “Removal of Xenon-135 from Circulating Fuel Salt of the MSBR by Mass Transfer to Helium Bubbles,” Oak Ridge National Laboratory (1968).
  • G. MERLA, “Improvement of Continuous Reprocessing and Fuel Composition Adjustment Capabilities in SERPENT-2 for Molten Salt Reactors,” Master’s Thesis, Politecnico di Milano (2021).
  • G. MERLA, A. CAMMI, and S. LORENZI, “A New Reactivity Control Approach for Circulating Fuel Reactors,” Proc. 30th Int. Conf. Nuclear Energy for New Europe, Bled, Slovenia, September 6–9. 2021, p. 206.1, Nuclear Society of Slovenia (2021).
  • B. BROVCHENKO et al., “Optimization of the Pre-Conceptual Design of the MSFR,” EVOL Project (2013).
  • M. AUFIERO et al., “Development of an OpenFOAM Model for the Molten Salt Fast Reactor Transient Analysis,” Chem. Eng. Sci., 111, 390 (2014); http://dx.doi.org/10.1016/j.ces.2014.03.003.
  • E. M. AUFIERO et al., “Calculating the Effective Delayed Neutron Fraction in the Molten Salt Fast Reactor: Analytical, Deterministic and Monte Carlo Approaches,” Ann. Nucl. Energy, 65, 78 (2014); http://dx.doi.org/10.1016/j.anucene.2013.10.015.