312
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Preliminary Conceptual Design of Nuclear Thermal Rocket Reactor Cores Using Ceramic Fuels with Beryllium or Composite Neutron Moderators

Pages 1534-1565 | Received 05 Jun 2023, Accepted 23 Aug 2023, Published online: 12 Oct 2023

References

  • B. DRAKE, “Human Exploration of Mars: Design Reference Architecture 5.0,” NASA-SP-2009-566, National Aeronautics and Space Administration (2009).
  • B. DRAKE, “Reference Mission 3.0, Addendum to the Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team,” NASA-SP-6107-Add, National Aeronautics and Space Administration (1998).
  • J. D. BALCOMB, “Nuclear Rocket Reference Data Summary,” LA-5057-MS, Los Alamos National Laboratory (1972).
  • D. R. KOENIG, “Experience Gained from the Space Nuclear Rocket Program (Rover),” LA-10062-H, Los Alamos National Laboratory (1986).
  • J. S. CLARK, “A Comparison of Nuclear Thermal Propulsion Concepts,” AIP Conf. Proc., 217, 740 (1991).
  • J. T. WALTON, “An Overview of Tested and Analyzed NTP Concepts,” NASA TM-105252, AIAA-91-3503, National Aeronautics and Space Administration (1991).
  • H. LUDEWIG et al., “Design of Particle Bed Reactors for the Space Nuclear Thermal Propulsion Program,” Prog. Nucl. Energy, 30, 1, 1 (1996); http://dx.doi.org/10.1016/0149-1970(95)00080-4.
  • S. K. BHATTACHARYYA, “An Assessment of Fuels for Nuclear Thermal Propulsion,” ANL/TD/TM01-22, Argonne National Laboratory (2001).
  • J. E. FITTJE, S. K. BOROWSKI, and B. SCHNITZLER, Revised Point of Departure Design Options for Nuclear Thermal Propulsion, American Institute of Aeronautics and Astronautics (2015).
  • D. I. POSTON, “Design Comparison of Nuclear Thermal Rocket Concepts,” Proc. Nuclear and Emerging Technologies for Space (NETS 2018), Las Vegas, Nevada, February 26–March 1, 2018, American Nuclear Society (2018).
  • “DARPA Selects Performers for Phase 1 of Demonstration Rocket for Agile Cislunar Operations (DRACO) Program,” DARPA Outreach; https://www.darpa.mil/news-events/2021-04–12 (Apr. 12, 2021).
  • “NASA and DARPA Will Test Nuclear Engine for Future Mars Missions,” NASA Press Release 23–012, National Aeronautics and Space Administration; https://www.nasa.gov/press-release/nasa-darpa-will-test-nuclear-engine-for-future-mars-missions (Jan. 2023).
  • G. J. YOUINOU and C. S. LIN, “Preliminary Conceptual Design of Fast Neutron Spectrum Nuclear Thermal Rocket Cores Using Monolithic Uranium Nitride Fuel,” Prog. Nucl. Energy, 149, 104237 (2022); http://dx.doi.org/10.1016/j.pnucene.2022.104237.
  • W. EMRICH, Principles of Nuclear Rocket Propulsion, Butterworth-Heinemann (2016).
  • S. BOROWSKI, D. MCCURDY, and T. PACKARD, “Nuclear Thermal Propulsion (NTP): A Proven Growth Technology for Human NEO/Mars Exploration Missions,” Proc. IEEE Aerospace Conf., Big Sky, Montana, 2012, IEEE (2012).
  • M. BELAIR, C. SARMIENTO, and T. LAVELLE, “Nuclear Thermal Rocket Simulation in NPSS,” Proc. 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conf., San Jose, California, July 14–17, 2013.
  • Thermophysical Properties of Materials for Nuclear Engineering, International Atomic Energy Agency (2008).
  • N. SOPPERA, E. DUPONT, and M. BOSSANT, “JANIS Book of Neutron-Induced Cross Sections, Comparison of Evaluated and Experimental Data from BROND-3.1, CENDL-3.2, EAF-2010, ENDF/B-VIII.0, IRDFF-II, JEFF-3.3, JENDL-4.0u, JENDL/HE-2007, TENDL-2019 and EXFOR,” Organisation for Economic Co-operation and Development, Nuclear Energy Agency Data Bank (2020).
  • B. PREDEL, “Sn-W (Tin-Tungsten),” Landolt-Börnstein - Group IV Physical Chemistry 5J (Pu-Re – Zn-Zr) (1998).
  • R. KAWABATA, M. MYOCHIN, and M. IWASE, “Solubilities of Molybdenum in Liquid Tin,” Metall. Mater. Trans. B, 26B (June 1995).
  • R. I. BATISTA, “Brazing of Refractory and Reactive Metals,” ASM Handbook, Vol. 6, Welding, Brazing, and Soldering (1993).
  • S. S. NABOYCHENKO, I. B. MURASHOVA, and O. D. NEIKOV, “Production of Rare Metal Powders, ” Handbook of Non-Ferrous Metal Powders, 2nd ed., Chap. 22 (2019).
  • T. A. TOMBERLIN, “Beryllium—A Unique Material in Nuclear Applications,” Proc. 36th Int. SAMPE Technical Conf., San Diego, California, November 15–18, 2004.
  • L. L. SNEAD et al., “Development and Potential of Composite Moderators for Elevated Temperature Nuclear Applications,” J. Asian Ceram. Soc., 10, 9 (2022); http://dx.doi.org/10.1080/21870764.2021.1993592.
  • H. TRELLUE et al., “Advancements in Yttrium Hydride Moderator Development,” Nucl. Technol., 209, Suppl. 1, S123 (2023); http://dx.doi.org/10.1080/00295450.2022.2043088.
  • Inorganic Reactions and Methods, Vol. 18, J. J. ZUCKERMAN and J. D. ATWOOD, Eds., Wiley (1999).
  • A. P. SHIVPRASAD et al., “Advanced Moderator Material Handbook,” LA-UR-20-27683, Los Alamos National Laboratory (2020).
  • W. A. WIESELQUIST, R. A. LEFEBVRE, and M. A. JESSEE, “SCALE Code System,” ORNL/TM-2005/39, Version 6.2.4, Oak Ridge National Laboratory (2020).
  • M. D. DEHART, S. SCHUNERT, and V. M. LABOURÉ, Nuclear Reactors: Spacecraft Propulsion, Research Reactors, and Reactor Analysis Topics, Chap. 1, “Nuclear Thermal Propulsion,” IntechOpen Publication (2022).
  • V. M. LABOURÉ et al., “Automated Power-Following Control for Nuclear Thermal Propulsion Startup and Shutdown Using MOOSE-Based Applications,” Prog. Nucl. Energy, 161, 104710 (2023); http://dx.doi.org/10.1016/j.pnucene.2023.104710.
  • M. KRECICKI and D. KOTLYAR, “Thermal Hydraulic Modeling of Solid-Fueled Nuclear Thermal Propulsion Reactors Part II: Full-Core Coupled Neutronic and Thermal Hydraulic Analysis,” Ann. Nucl. Energy, 179, 109397 (2022); http://dx.doi.org/10.1016/j.anucene.2022.109397.
  • B. J. ADE et al., “Reactor Physics Considerations for Use of Yttrium Hydride Moderator,” Nucl. Sci. Eng., 196, 1539 (2022); http://dx.doi.org/10.1080/00295639.2022.2035157.
  • D. I. POSTON, “Nuclear Testing and Safety Comparison of Nuclear Thermal Rocket Concepts,” Proc. Nuclear and Emerging Technologies for Space (NETS 2018), Las Vegas, Nevada, February 26–March 1, 2018, American Nuclear Society (2018).
  • S. E. BAYS et al., “ATR Compendium: Irradiation Test Capabilities,” Nucl. Technol., 201, 191 (Mar. 2018); http://dx.doi.org/10.1080/00295450.2018.1432967.
  • R. D. MCCARTY, J. HORD, and H. M. ORDER, Selected Properties of Hydrogen (Engineering Design Data), NBS Monograph 168 (1981).
  • R. K. SHAH and D. P. SEKULIC, Fundamentals of Heat Exchanger Design, John Wiley and Sons (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.