27
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Post-Neutron Mass Yield Distribution in the Epi-Cadmium Neutron-Induced Fission of 233U

, , &
Pages 1566-1582 | Received 18 Jul 2023, Accepted 11 Sep 2023, Published online: 27 Nov 2023

References

  • R. VANDENBOSCH and J. R. HUIZENGA, Nuclear Fission, Academic, New York (1973).
  • C. WAGEMANS, The Nuclear Fission Process, CRC, London (1990).
  • J. P. UNIK et al., Proc. 3rd IAEA Symp. Physics and Chemistry of Fission, Rochester, New York, 1973, Vol. II, p. 19, International Atomic Energy Agency (1974).
  • D. C. HOFFMAN and M. M. HOFFMAN, “Post-Fission Phenomena,” Ann. Rev. Nucl. Part. Sci., 24, 151 (1974); https://doi.org/10.1146/annurev.ns.24.120174.001055.
  • B. D. WILKINS, E. P. STEINBERG, and R. R. CHASMAN, “Scission-Point Model of Nuclear Fission Based on Deformed-Shell Effects,” Phys. Rev. C, 14, 1832 (1976); https://doi.org/10.1103/PhysRevC.14.1832.
  • A. C. WAHL, “Nuclear-Charge Distribution and Delayed-Neutron Yields for Thermal-Neutron-Induced Fission of 235U, 233U, and 239Pu and for Spontaneous Fission of 252Cf,” At. Data Nucl. Data Tables, 39, 1 (1988); https://doi.org/10.1016/0092-640X(88)90016-2.
  • H. NAIK et al., “Systematics of Charge Distribution Studies in Low-Energy Fission of Actinides,” Nucl. Phys. A, 612, 143 (1997); https://doi.org/10.1016/S0375-9474(97)80002-4.
  • H. NAIK, R. J. SINGH, and R. H. IYER, “Charge Distribution Studies in the Fast-Neutron-Induced Fission of 232Th, 238U, 240Pu and 244Cm,” Eur. Phys. J. A, 16, 495 (2003); https://doi.org/10.1140/epja/i2002-10122-9.
  • K. OYAMATSU et al., “New Method for Calculating Aggregate Fission Product Decay Heat with Full Use of Macroscopic-Measurement Data,” J. Nucl. Sci. Techol., 38, 477 (2001); https://doi.org/10.1080/18811248.2001.9715057.
  • R. K. SINHA and A. KAKODKAR, “Design and Development of the AHWR—The Indian Thorium Fuelled Innovative Nuclear Reactor,” Nucl. Eng. Des., 236, 683 (2006); https://doi.org/10.1016/j.nucengdes.2005.09.026.
  • A. NUTTIN et al., “Potential of Thorium Molten Salt Reactors Detailed Calculations and Concept Evolution with a View to Large Scale Energy Production,” Prog. Nucl. Energy, 46, 77 (2005); https://doi.org/10.1016/j.pnucene.2004.11.001.
  • T. R. ALLEN and D. C. CRAWFORD, “Lead-Cooled Fast Reactor Systems and the Fuels and Materials Challenges,” Sci. Technol. Nucl. Install., 2007, 1 (2007); https://doi.org/10.1155/2007/97486.
  • “Fast Reactors and Accelerator Driven Systems Knowledge Base,” Thorium Fuel Utilization: Options and Trends, IAEA-TECDOC-1319, International Atomic Energy Agency.
  • L. MATHIEU et al., “Proportion for a Very Simple Thorium Molten Salt Reactor,” Proc. Global Int. Conf., Tsukuba, Japan, 2005, Paper No. 428 (2005).
  • “IAEA-EXFOR Database Version of 2020-01-28,” International Atomic Energy Agency; http://www-nds.iaea.org/exfor.
  • N. OTUKA et al., “Towards a More Complete and Accurate Experimental Nuclear Reaction Data Library (EXFOR): International Collaboration Between Nuclear Reaction Data Centres (NRDC),” Nucl. Data Sheets, 120, 272 (2014); https://doi.org/10.1016/j.nds.2014.07.065.
  • U. QUADE et al., “Nuclide Yields of Light Fission Products from Thermal-Neutron Induced Fission of 233U at Different Kinetic Energies,” Nucl. Phys. A, 487, 1 (1988); https://doi.org/10.1016/0375-9474(88)90127-3.
  • S. AMIEL, H. FELDSTEIN, and T. IZAK-BIRAN, “Distributions of Fission Products from Various Low-Energy Fission Reactions and the Systematics of the Odd-Even Fluctuations,” Phys. Rev. C, 15, 2119 (1977); https://doi.org/10.1103/PhysRevC.15.2119.
  • T. IZAK-BIRAN and S. AMIEL, Phys. Rev. C, 16, 266 (1977); https://doi.org/10.1103/PhysRevC.16.266.
  • H. NAIK et al., Nucl. Sci. Eng., 197, 1133 (2023); https://doi.org/10.1080/00295639.2022.2142433.
  • J. GALY et al., “Yields of Products from Fast Neutron-Induced Fission of 233U Measured by Means of an Isotope Separator On-Line (ISOL) System,” Eur. Phys. J. A, 8, 331 (2000); https://doi.org/10.1007/s100500070086.
  • A. I. SERGACHEV et al., “Duration of the X-Ray Emission Arising in a Vacuum Discharge,” Sov. Nucl. Phys., 16, 266 (1973); English Translation of Yad. Fiz., 16, 3, 475 (1972); https://doi.org/10.1007/BF00892697.
  • V. M. PIKSAYKIN et al., “The Absolute Total Delayed Neutron Yields, Relative Abundances and Half-Lives of Delayed Neutron Groups from Neutron Induced Fission of 232Th, 233U, 236U, 239Pu and 241Am,” INDC (NDS)-0646, International Atomic Energy Agency (2013).
  • A. N. GUDKOV et al., “Yields of Delayed Neutron Precursors in the Fission of Actinides,” Radiochim. Acta, 57, 69 (1992); https://doi.org/10.1524/ract.1992.57.23.69.
  • A. RAMASWAMI et al., Nucl. Chem., 256, 353 (2003); https://doi.org/10.1023/A:1023966207973.
  • “NuDat 2.6,” National Nuclear Data Center, Brookhaven National Laboratory; http://www.nndc.bnl.gov/ ( updated 2011).
  • E. BROWNE, R. B. FIRESTONE, and V. S. SHIRLEY, Eds., Table of Radioactive Isotopes, Wiley, New York (1986).
  • J. BLACHOT and C. FICHE, Ann. Phys. (Paris), 6, 3 (1981).
  • “Evaluated Nuclear Data Library Descriptions, ENDF/B-VIII.0 and JEFF-3.3,” Organisation for Economic Co-operation and Development, Nuclear Energy Agency; http://www.oecd-nea.org/.
  • A. MATTERA and A. A. SONZOGNI, “Revision of Fission Yields Uncertainties in ENDF/B-VIII.0,” BNL-220804-2021-INRE, Brookhaven National Laboratory (Jan. 12, 2021); https://doi.org/10.2172/1762758.
  • R. S. IYER et al., Proc. Conf. Physics and Chemistry of Fission, Vienna, Austria, March 22, 1965, Vol. I, p. 439, International Atomic Energy Agency (1965).
  • S. KATCOFF, Nucleonics, 18, 201 (1960).
  • E. K. HYDE, The Nuclear Properties of Heavy Elements, Vol. III, p. 215, Prentice Hall, Englewood Cliffs, New Jersey (1964).
  • H. N. ERTEN et al., “Mass Distribution in the Reactor-Neutron-Induced Fission of Thorium-232,” Nucl. Sci. Eng., 79, 167 (1981); https://doi.org/10.13182/NSE81-A27405.
  • H. NAIK et al., “Post-Neutron Mass Chain Yield Distribution in the Epi-Cadmium Neutron-Induced Fission of 232Th,” Eur. Phys. J. Plus, 136, 694 (2021); https://doi.org/10.1140/epjp/s13360-021-01690-8.
  • M. N. NAMBOODIRI et al., “Mass Distribution in the Reactor Neutron Fission of 231Pa and 237Np,” Nucl. Chem., 30, 2305 (1968); https://doi.org/10.1016/0022-1902(68)80238-6.
  • H. NAIK et al., Radiochim. Acta, 75, 69 (1996); https://doi.org/10.1524/ract.1996.75.2.69.
  • R. STELLA et al., “Mass Distribution in the Fission of 237Np with Epicadmium Neutrons,” J. Inorg. Nucl. Chem., 31, 3739 (1969); https://doi.org/10.1016/0022-1902(69)80291-5.
  • H. NAIK et al., Nucl. Sci. Eng., 196, 16 (2022); https://doi.org/10.1080/00295639.2021.1951078.
  • H. NAIK et al., “Post-Neutron Mass Yield Distribution in the Epi-Cadmium Neutron Induced Fission of 240Pu,” Eur. Phys. J. A, 57, 112 (2021); https://doi.org/10.1140/epja/s10050-021-00377-z.
  • W. A. MYERS et al., Phys. Rev. C, 18, 1700 (1978); https://doi.org/10.1103/PhysRevC.18.1700.
  • H. NAIK et al., Nucl. Sci. Eng., 196, 982 (2022); https://doi.org/10.1080/00295639.2022.2038529.
  • R. A. SIGG et al., Phys. Rev. C, 27, 245 (1983); https://doi.org/10.1103/PhysRevC.27.245.
  • H. NAIK et al., Nucl. Sci. Eng., 196, 694 (2022); https://doi.org/10.1080/00295639.2021.2014753.
  • H. NAIK et al., “Mass Yield Distribution in the Fission of 244Cm Induced by a Spectrum of Epi-Cadmium to Fast Neutron,” Eur. Phys. J. A, 57, 176 (2021); https://doi.org/10.1140/epja/s10050-021-00485-w.
  • H. NAIK et al., Nucl. Sci. Eng., 197, 1265 (2023); https://doi.org/10.1080/00295639.2022.2150029.
  • H. NAIK et al., Nucl Sci. Eng., 197, 3110 (2023); https://doi.org/10.1080/00295639.2023.2190725.
  • H. NAIK et al., Nucl. Sci. Eng., 197, 1279 (2023); https://doi.org/10.1080/00295639.2022.2153577.
  • H. NAIK et al., Nucl. Sci. Eng., 198, 771 (2024); https://doi.org/10.1080/00295639.2023.2224274.
  • L. E. GLENDENIN et al., Phys. Rev. C., 24, 200 (1981); https://doi.org/10.1103/PhysRevC.24.2600.
  • P. P. DYACHENKO, B. D. KUZ’MINOV, and M. Z. TARASKO, Sov. Nucl. Phys., 8, 15 (1969); English Translation of Yad. Fiz., 8, 2, 286 (1968).
  • H. NAIK et al., “Post-Neutron Mass Yield Distribution in the Thermal Neutron Induced Fission of 245Cm,” Eur. Phys. J., 56, 9, 227 (2020); https://doi.org/10.1140/epja/s10050-020-00228-3.
  • U. BROSA, S. GROSSMANN, and A. MULLER, “Nuclear Scission,” Phys. Rep., 197, 167 (1990); https://doi.org/10.1016/0370-1573(90)90114-H.
  • G. SCAMPS and C. SIMENEL, “Impact of Pear-Shaped Fission Fragments on Mass-Asymmetric Fission in Actinides,” Nature, 564, 382 (2018); https://doi.org/10.1038/s41586-018-0780-0.
  • G. SCAMPS and C. SIMENEL, “Effect of Shell Structure on the Fission of Sub-Lead Nuclei,” Phys. Rev. C, 100, 041602(R) (2019); https://doi.org/10.1103/PhysRevC.100.041602.
  • H. NAIK et al., Nucl. Sci. Eng., 197, 485 (2023); https://doi.org/10.1080/00295639.2022.2133947.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.