4
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Chromosomal translocations and their role in the pathogenesis of non-Hodgkin's lymphomas

, &
Pages 397-409 | Published online: 06 Jul 2009

  • Jaffe ES, Harris NL, Stein H, Vardiman JW. Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. WHO Classification of Tumours. Lyon: IARC Press, 2001.
  • Aster JC, Kobayashi Y, Shiota M, Mori S, Sklar J. Detection of the t(14; 18) at similar frequencies in hyperplastic lyraphoid tissues from American and Japanese patients. Am J Pathol 1992; 141: 291-9.
  • Limpens J, de Jong D, van Krieken JH, et al. Bcl-2/JH rearrange-ments in benign lymphoid tissues with follicular hyperplasia. Oncogene 1991; 6: 2271-6.
  • Limpens J, Stad R, Vos C, et al. Lymphoma-associated translocation t14;18) in blood B cells of normal individuals. Blood 1995; 85: 2528-36.
  • Pittaluga S, Wlodarska I, Pulford K, et al. The monoclonal antibody ALKl identifies a distinct morphological subtype of anaplastic large cell lymphoma associated with 2p23/ALK rearrangements. Am J Pathol 1997; 151: 343-51.
  • Trumper L, Pfreundschuh M, Bonin FV, Daus H. Detection of the t(2;5)-associated NPMJALK fusion cDNA in peripheral blood cells of healthy individuals. Br J Haematoll 998; 103: 1138-44.
  • Biennaux C, Loos M, Sels A, Huez G, Stryckmans P. Detection of major bcr-abl gene expression at a very low level in blood cells of some healthy individuals. Blood 1995; 86: 3118-22.
  • Morris SW, Kirstein MN, Valentine MB, et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non- Hodgkin's lymphoma. Science 1994; 263: 1281-4.
  • Morris SW, Naeve C, Mathew P, et al. ALK, the chromosome 2 gene locus altered by the t(2;5) in non-Hodgkin's lymphoma, encodes a novel neural receptor tyrosine kinase that is highly related to leukocyte tyrosine kinase (LTK). Oncogene 1997; 14: 2175-88.
  • Stoica GE, Kuo A, Aigner A, et al. Identification of anaplastic lymphoma kinase as a receptor for the growth factor pleiotrophin. J Biol Chem 2001; 276: 16772-9.
  • Chan PK, Chan FY, Morris SW, Xie Z. Isolation and characterization of the human nucleophosmin/B23 (NPM) gene: identification of the YYl binding site at the 5' enhancer region. Nucleic Acids Res 1997; 25: 1225-32.
  • Bischof D, Pulford K, Mason DY, Morris SW. Role of the nucleophosmin (NPM) portion of the non-Hodgkin's lymphoma-associated NPM-anaplastic lymphoma kinase fusion protein in oncogenesis. MoI Cell Biol 1997; 17: 2312-25.
  • Kuefer MU, Look AT, Pulford K, et al. Retrovirus-mediated gene transfer of NPM-ALK causes lymphoid malignancy in mice. Blood 1997; 90: 2901-10.
  • Bai RY, Dieter P, Peschel C, Morris SW, Duyster J. Nucleophosmin-anaplastic lymphoma kinase of large-cell anaplastic lymphoma is a constitutively active tyrosine kinase that utilizes phospholipase C-gamma to mediate its mitogenicity. MoI Cell Biol 1998; 18: 6951-61.
  • Fujimoto J, ShiotaM, Iwahara T, et al. Characterization of the transforming activity of p80, a hyperphosphorylated protein in a Ki-I lymphoma cell line with chromosomal translocation t(2;5). Proc Natl Acad Sd USA 1996; 93: 4181-6.
  • Bai RY, Ouyang T, Miething C, Morris SW, Peschel C, Duyster J. Nucleophosmin-anaplastic lymphoma kinase associated with ana-plastic large-cell lymphoma activates the phosphatidylinositol 3-kinase/Akt antiapoptotic signaling pathway. Blood 2000; 96: 4319-27.
  • Datta SR, Dudek H, Tao X, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997; 91: 231-41.
  • Khwaja A. Akt is more than just a Bad kinase. Nature 1999; 401: 33-4.
  • Touriol C, Greenland C, Lamant L, et al. Further demonstration of the diversity of chromosomal changes involving 2p23 in ALK-positive lymphoma: 2 cases expressing ALK kinase fused to CLTCL (clathrin chain pdypeptide-like). Blood 2000; 95: 3204-7.
  • Hernandez L, Pinyol M, Hernandez S, et al. TRK-fused gene (TFG) is a new partner of ALK in anaplastic large cell lymphoma producing two structurally different TFG-ALK translocations. Blood 1999; 94: 3265-8.
  • Maes B, Vanhentenrijk V, Wlodarska I, et al. The NPM-ALK and the ATIC-ALK fusion genes can be detected in non-neoplastic cells. Am J Pathol 2001; 158: 2185-93.
  • Tort F, Pinyol M, Pulford K, et al. Molecular characterization of a new ALK translocation involving moesin (MSN-ALK) in anaplastic large cell lymphoma. Lab Invest 2001; 81: 419-26.
  • Falini B, Pileri S, Zinzani PL, et al. ALK+ lymphoma: clinico-pathological findings and outcome. Blood 1999; 93: 2697-706.
  • ShiotaM, Nakamura S, Ichinohasama R, et al. Anaplastic large cell lymphomas expressing the novel chimeric protein p80NPM/ALK: a distinct clinicopathologic entity. Blood 1995; 86: 1954-60.
  • Gascoyne RD, Aoun P, Wu D, et al. Prognostic significance of anaplastic lymphoma kinase (ALK) protein expression in adults with anaplastic large cell lymphoma. Blood 1999; 93: 3913-21.
  • Rassidalds GZ, Sarris AH, Herling M, et al. Differential expression of BCL-2 family proteins in ALK-positive and ALK-negative anaplastic large cell lymphoma of T/null-cell lineage. Am J Pathol 2001; 159: 527-35.
  • Pelicci PG, Knowles DM 2nd, Magrath I, Dalla-Favera R. Chromo-somal breakpoints and structural alternations of the c-myc locus differ in endemic and sporadic forms of Burkitt lymphoma. Proc Natl Acad Sd USA 1986; 83: 2984-8.
  • Bhatia K, Huppi K, Spangler G, Siwarski D, Iyer R, Magrath I. Point mutations in the c-Myc transactivation domain are common in Burkitt's lyraphoma and mouse plasmacytomas. Nat Genet 1993; 5: 56-61.
  • Grandori C, Cowley SM, James LP, Eisenman RN. The Myc/Max/ Mad network and die transcriptional control of cell behavior. Annu Rev Cell Dev Biol 2000; 16: 653-99.
  • Bentley DL, Groudine M. A block to elongation is largely responsible for decreased transcription of c-myc in differentiated HL60 cells. Nature 1986; 321: 702-6.
  • Zajac-Kaye M, Levens. D. Phosphorylation-dependent binding of a 138-kDa myc intron factor to a regulatory element in the first intron of the c-myc gene. J Biol Chem 1990; 265: 4547-51.
  • Cesarman E, Dalla-Favera R, Bentley D, Groudine M. Mutations in the first exon are associated with altered transcription of c-myc in Burkitt lymphoma. Science 1987; 238: 1272-5.
  • Zajac-Kaye M, Gelmann EP, Levens D. A point mutation in the c-myc locus of a Burldtt lymphoma abolishes binding of a nuclear protein. Science 1988; 240: 1776-80.
  • Bouchard C, Thieke K, Maier A, et al. Direct induction of cyclin D2 by Myc contributes to cell cycle progression and sequestration of p27. EMBOJ 1999; 18: 5321-33.
  • Perez-Roger I, Kim SH, Griffiths B, Sewing A, Land H. Cyclins Dl and D2 mediate myc-induced proliferation via sequestration of p27(Kipl) and p21(Cipl). EMBOJ 1999; 18: 5310-20.
  • Fanidi A, Harrington EA, Evan GI. Cooperative interaction between c-myc and bcl-2 proto-oncogenes. Nature 1992; 359: 554-6.
  • Sherr CI. Tumor surveillance via the ARF-p53 pathway. Genes Dev 1998; 12: 2984-91.
  • Ye BH, Chaganti S, Chang CC, et al. Chromosomal translocations cause deregulated BCL6 expression by promoter substitution in B cell lymphoma. EMBO J 1995; 14: 6209-17.
  • Dalla-Favera R, Ye BH, Lo Coco F, et al. Identification of genetic lesions associated with diffuse large-cell lymphoma. Ann Oncol 1994; 5: 55-60.
  • Ohshima A, Miura I, Hashimoto K, et al. Rearrangements of the BCL6 gene and chromosome aberrations affecting 3q27 in 54 patients with non-Hodgkin's lymphoma. Leak Lymphoma 1997; 27: 329-34.
  • Chen W, Iida S, Louie DC, Dalla-Favera R, Chaganti RS. Heterologous promoters fused to BCL6 by chromosomal translocations affecting band 3q27 cause its deregulated expression during B-cell differentiation. Blood 1998; 91: 603-7.
  • Galieque Zouitina S, Quief S, Hildebrand MP, et al. The B cell transcriptional coactivator BOB1/OBF1 gene fuses to the LAZ3/ BCL6 gene by t(3;ll)(q27;q23.1) chromosomal translocation in a B cell leukemia lineCKarpas 231). Leukemia 1996; 10: 579-87.
  • Ye BH, Rao PH, Chaganti RS, Dalla-Favera R. Cloning of bcl-6, the locus involved in chromosome translocations affecting band 3q27 in B-cell lymphoma. Cancer Res 1993; 53: 2732-5.
  • Staudt LM, Dent AL, Shaffer AL, Yu X. Regulation of lymphocyte cell fate decisions and lymphomagenesis by BCL-6. Int Rev Immunol 1999; 18: 381-403.
  • Ye BH, Cattoretti G, Shen Q, et al. The BCL-6 proto-oncogene controls germinal-centre formation and Th2-type inflammation. Nat Genet 1997; 16: 161-70.
  • Lin Y, Wong K, Calame K. Repression of c-myc transcription by Blimp-1, an inducer of terminal B cell differentiation. Science 1997; 276: 596-9.
  • Shaffer AL, Yu X, He Y, Boldrick J, Chan EP, Staudt LM. BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control. Immunity 2000; 13: 199-212.
  • Pasqualucci L, Migliazza A, Fracchiolla N, et al. BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci. Proc Natl Acad Sei USA 1998; 95: 11816-21.
  • Akasaka T, Ueda C, Kurata M, et al. Nonimmunoglobulin (non-Ig)/ BCL6 gene fusion in diffuse large B-cell lymphoma results in worse prognosis than Ig/BCL6. Blood 2000; 96: 2907-9.
  • Lossos IS, Jones CD, Warnke R, et al. Expression of a single gene, BCL-6, strongly predicts survival in patients with diffuse large B-cell lymphoma. Blood 2001; 98: 945-51.
  • Dyomin VG, Rao PH, Dalla-Favera R, Chaganti RS. BCL8, a novel gene involved in translocations affecting band 15qll-13 in diffuse large-cell lymphoma. Proc Natl Acad Sei USA 1997; 94: 5728-32.
  • Offit K, Jhanwar SC, Ladanyi M, Filippa DA, Chaganti RS. Cytogenetic analysis of 434 consecutively ascertained specimens of non-Hodgkin's lymphoma: correlations between recurrent aberrations, histology, and exposure to cytotoxic treatment. Genes Chromo-somes Cancer 1991; 3: 189-201.
  • Callanan MB, Le Baccon P, Mossuz P, et al. The IgG Fc receptor, FcgammaRIIB, is a target for deregulation by chromosomal trans-location in malignant lymphoma. Proc NaI Acad Sei USA 2000; 97: 309-14.
  • Dyomin VG, Palanisamy N, Lloyd KO, et at. MUCl is activated in a B-cell lymphoma by the t(l;14)(q21;q32) translocation and is rearranged and amplified in B-cell lymphoma subsets. Blood 2000; 95: 2666-71.
  • Daeron M. Fc receptor biology. Anna Rev Immunol 1997; 15: 203-34.
  • de Andres B, Mueller AL, Verbeek S, Sandor M, Lynch RG. A regulatory role for Fcgamma receptors CD 16 and CD32 in the development of murine B cells. Blood 1998; 92: 2823-9.
  • Gilles F, Goy A, Remache Y, Shue P, Zelenetz AD. MUCl deregulation as the consequence of a Ii I;14)(q21;q32) translocation in an extranodal lymphoma. Blood 2000; 95: 2930-6.
  • Neri A, Chang CC, Lombardi L, et al. B cell lymphoma-associated chromosomal translocation involves candidate oncogene lyt-10, homologous to NF-kappa B p50. Cell 1991; 67: 1075-87.
  • Offit K, Chaganti RS. Chromosomal aberrations in non-Hodgkin's lymphoma. Biologic and clinical correlations. Hematol Oncol Clin North Am 1991; 5: 853-69.
  • Fracchiolla NS, Lombardi L, Salina M, et al. Structural alterations of the NF-kappa B transcription factor lyt-10 in lymphoid malignancies. Oncogene 1993; 8: 2839-45.
  • Kopp EB, Ghosh S. NF-kappa B and rel proteins in innate immunity. Adv Immunol 1995; 58: 1-27.
  • Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Anna Rev Immunol 2000; 18: 621-63.
  • Davis RE, Brown KD, Siebenlist U, Staudt LM. Constitutive nuclear factor kappaB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells. / Exp Med 2001; 194: 1861-74.
  • Fausto N, Laird AD, Webber EM. Liver regeneration. 2. Role of growth factors and cytokines in hepatic regeneration. FASEB J 1995; 9: 1527-36.
  • Guo Q, Robinson N, Mattson MP. Secreted beta-amyloid precursor protein counteracts the proapoptotic action of mutant presenilin-1 by activation of NF-kappaB and stabilization of calcium homeostasis. J Biol Chem 1998; 273: 12341-51.
  • Yamaoka S, Inoue H, Sakurai M, et al. Constitutive activation of NF-kappa B is essential for transformation of rat fibroblasts by the human T-cell leukemia virus type I Tax protein. EMBO J 1996; 15: 873-87.
  • Finco TS, Westwick JK, Norris JL, Beg AA, Der CJ, Baldwin AS Jr. Oncogenic Ha-Ras-induced signaling activates NF-kappaB transcrip-tional activity, which is required for cellular transformation. J Biol Chem 1997; 272: 24113-6.
  • ArsuraM, Mercurio F, Oliver AL, Thorgeirsson SS, Sonenshein GE. Role of the IkappaB kinase complex in oncogenic Ras- and Raf-mediated transformation of rat liver epithelial cells. MoI Cell Biol 2000; 20: 5381-91.
  • Reuther JY, Reuther GW, Cortez D, Pendergast AM, Baldwin AS Jr. A requirement for NF-kappaB activation in Bcr-Abl-mediated transformation. Genes Dev 1998; 12: 968-81.
  • Baldwin AS Jr, Azizkhan JC, Jensen DE, Beg AA, Goodly LR. Induction of NF-kappa B DNA-binding activity during the G0-to-G1 transition in mouse fibroblasts. MoI Cell Biol 1991; 11: 4943-51.
  • Kaltschmidt B, Kaltschmidt C, Hehner SP, Droge W, Schmitz ML. Repression of NF-kappaB impairs HeL a cell proliferation by functional interference with cell cycle checkpoint regulators. Onco-gene 1999; 18: 3213-25.
  • Joyce D, Bouzahzah B, FuM, et al. Integration of Rac-dependent regulation of cyclin Dl transcription through a nuclear factor-kappaB-dependent pathway. J Biol Chem 1999; 274: 25245-9.
  • Hinz M, Krappmann D, Eichten A, Heder A, Scheidereit C, Strauss M. NF-kappaB function in growth control: regulation of cyclin D1 expression and G0/Gl-to-S-phase transition. MoI Cell Biol 1999; 19: 2690-8.
  • Guttridge DC, Albanese C, Reuther JY, Pestell RG, Baldwin AS Jr. NF-kappaB controls cell growth and differentiation through tran-scriptional regulation of cyclin Dl. MoI Cell Biol 1999; 19: 5785-99.
  • Yunis JJ, Oken MM, Kaplan ME, Ensrud KM, Howe RR, Theologides A. Distinctive chromosomal abnormalities in histologie subtypes of non-Hodgkin's lymphoma. New Engl J Med 1982; 307: 1231-6.
  • Jacobson JO, Wilkes BM, Kwiatkowski DJ, Medeiros LJ, Aisenberg AC, Harris NL. bcl-2 rearrangements in de novo diffuse large cell lymphoma. Association with distinctive clinical features. Cancer 1993; 72: 231-6.
  • Tsujimoto Y, Cossman J, Jaffe E, Croce CM. Involvement of the bcl-2 gene in human follicular lymphoma. Science 1985; 228: 1440-3.
  • Estalilla OC, Medeiros LJ, Manning JT Jr, Luthra R. 5'?3' exonuclease-based real-time PCR assays for detecting the t(14;18)(q32;21 ): a survey of 162 malignant lymphomas and reactive specimens. Mod Pathol 2000; 13: 661-6.
  • Albinger-Hegyi A, Hochreutener B, Abdou MT, et al. High frequency of t(14;18)-translocation breakpoints outside of major breakpoint and minor cluster regions in follicular lymphomas. Improved polymerase chain reaction protocols for their detection. Am J Pathol 2002; 160: 823-32.
  • Yabumoto K, Akasaka T, Muramatsu M, et al. Rearrangement of the 5' cluster region of the BCL2 gene in lymphoid neoplasm: a summary of nine cases. Leukemia 1996; 10: 970-7.
  • Seite P, Million J, d'Agay MF, et al. BCL2 gene activation and protein expression in follicular lymphoma: a report on 64 cases. Leukemia 1993; 7: 410-7.
  • Chao DT, Korsmeyer SJ. BCL-2 family: regulators of cell death. Annu Rev Immunol 1998; 16: 395-419.
  • Reed JC. Bcl-2 family proteins. Oncogene 1998; 17: 3225-36.
  • May WS, Tyler PG, Ito T, Armstrong DK, Qatsha KA, Davidson NE. Interleukin-3 and bryostatin-1 mediate hyperphosphorylation of BCL2 alpha in association with suppression of apoptosis. J Biol Chem 1994; 269: 26865-70.
  • Ito T, Deng X, Carr B, May WS. Bcl-2 phosphorylation required for anti-apoptosis function. J Biol Chem 1997; 272: 11671-3.
  • Brady HJ, Gil-Gomez G, Kirberg J, Berns AJ. Bax alpha perturbs T cell development and affects cell cycle entry of T cells. EMBO J 1996; 15:6991-7001.
  • Linette GP, Li Y, Roth K, Korsmeyer SJ. Cross talk between cell death and cell cycle progression: BCL-2 regulates NFAT-mediated activation. Proc Natl Acad Sci USA 1996; 93: 9545-52.
  • Vairo G, Innes KM, Adams JM. Bcl-2 has a cell cycle inhibitory function separable from its enhancement of cell survival. Oncogene 1996; 13: 1511-9.
  • Vairo G, Soos TJ, Upton TM, et al. Bcl-2 retards cell cycle entry through p27(Kipl), pRB relative p130, and altered E2F regulation. MoI Cell Biol 2000; 20: 4745-53.
  • Gaidano G, Pastore C, Capello D, Cilli V, Saglio G. Molecular pathways in low grade B-cell lymphoma. Leuk Lymphoma 1997; 26 (Suppl 1): 107-13.
  • Offit K, Parsa NZ, Filippa D, Jhanwar SC, Chaganti RS. t(9;14)(p!3;q32) denotes a subset of low-grade non-Hodgkin's lymphoma with plasmacytoid differentiation. Blood 1992; 80: 2594-9.
  • Mansoor A, Medeiros LJ, Weber DM, et al. Cytogenetic findings in lymphoplasmacytic lymphoma/Waldenstrom macroglobulinemia. Chromosomal abnormalities are associated with the polymorphous subtype and an aggressive clinical course. Am J Clin Pathol 2001 ; 116: 543-9.
  • Busslinger M, Klix N, Pfeffer P, Graninger PG, Kozmik Z. Deregulation of PAX-5 by translocation of the Emu enhancer of the IgH locus adjacent to two alternative PAX-5 promoters in a diffuse large-cell lymphoma. Proc Natl Acad Sci USA 1996; 93: 6129-34.
  • Barberis A, Widenhorn K, Vitelli L, Busslinger M. A novel B-cell lineage-specific transcription factor present at early but not late stages of differentiation. Genes Dev 1990; 4: 849-59.
  • Morrison AM, Nutt SL, Thevenin C, Rolink A, Busslinger M. Loss-and gain-of-function mutations reveal an important role of BSAP (Pax-5) at the start and end of B cell differentiation. Semin Immunol 1998; 10: 133-42.
  • Wakatsuki Y, Neurath MF, Max EE, Strober W. The B cell-specific transcription factor BSAP regulates B cell proliferation. J Exp Med 1994; 179: 1099-108.
  • Dewald GW, KyIe RA, Hicks GA, Greipp PR. The clinical significance of cytogenetic studies in 100 patients with multiple myeloma, plasma cell leukemia, or amyloidosis. Blood 1985; 66: 380-90.
  • Sawyer JR, Waldron JA, Jagannath S, Barlogie B. Cytogenetic findings in 2000 patients with multiple myeloma. Cancer Genet Cytogenet 1995; 82: 41-9.
  • Williams ME, Swerdlow SH, Rosenberg CL, Arnold A. Chromosome 11 translocation breakpoints at the PRADl/cyclin Dl gene locus in centrocytic lymphoma. Leukemia 1993; 7: 241-5.
  • de Boer CJ, van Krieken JH, Kluin-Nelemans HC, Kluin PM, Schuuring E. Cyclin Dl messenger RNA overexpression as a marker for mantle cell lymphoma. Oncogene 1995; 10: 1833-40.
  • Tsujimoto Y, Jaffe E, Cossman J, Gorham J, Nowell PC, Croce CM. Clustering of breakpoints on chromosome 11 in human B-cell neoplasma with the t(11;14) chromosome translocation. Nature 1985; 315: 340-3.
  • Vaandrager JW, Schuuring E, Zwikstra E, et al. Direct visualization of dispersed 11q13 chromosomal translocations in mantle cell lymphoma by multicolor DNA fiber fluorescence in situ hybrid-ization. Blood 1996; 88: 1177-82.
  • Janssen JW, Vaandrager JW, Heuser T, et al. Concurrent activation of a novel putative transforming gene, myeov, and cyclin Dl in a subset of multiple myeloma cell lines with t(ll;14)(ql3;q32). Blood 2000; 95: 2691-8.
  • Gillett CE, Barnes DM. Demystified. . cell cycle. MoI Pathol 1998; 51: 310-6.
  • Sherr CJ. Mammalian Gl cyclins. Cell 1993; 73: 1059-65.
  • Ando K, Ajchenbaum-Cymbalista F, Griffin JD. Regulation of Gl/S transition by cyclins D2 and D3 in hematopoietic cells. Proc Natl Acad Sei USA 1993; 90: 9571-5.
  • Jiang W, Kahn SM, Zhou P, et al. Overexpression of cyclin Dl in rat fibroblasts causes abnormalities in growth control, cell cycle progression and gene expression. Oncogene 1993; 8: 3447-57.
  • Lukas J, Jadayel D, Bartkova J, et al. BCL-1/cyclin Dl oncoprotein oscillates and subverts the Gl phase control in B-cell neoplasms carrying the t(ll;14) translocation. Oncogene 1994; 9: 2159-67.
  • Bodrug SE, Warner BJ, Bath ML, Lindeman GJ, Harris AW, Adams JM. Cyclin Dl transgene impedes lymphocyte maturation and collaborates in lymphomagenesis with the myc gene. EMBO J 1994; 13: 2124-30.
  • Lovec H, Grzeschiczek A, Kowalski MB, Moroy T. Cyclin Dl/bcl-1 cooperates with myc genes in the generation of B-cell lymphoma in transgenic mice. EMBO J 1994; 13: 3487-95.
  • Hofmann WK, de Vos S, Tsukasaki K, et al. Altered apoptosis pathways in mantle cell lymphoma detected by digonucleotide microarray. Blood 2001; 98: 787-94.
  • Vega F, Medeiros LJ. Marginal-zone B-cell lymphoma of extranodal mucosa-associated lymphoid tissue type: molecular genetics provides new insights into pathogenesis. Adv Anat Pathol 2001 ; 8: 313-26.
  • Auer IA, Gascoyne RD, Connors JM, et al. t(ll;18)(q21;q21) is the most common translocation in MALT lymphomas. Ann Oncol 1997; 8: 979-85.
  • Horsman D, Gascoyne R, Klasa R, Coupland R. t(ll;18)(q21;q21.1 ): a recurring translocation in lymphomas of mucosa-associated lymphoid tissue (MALT)? Genes Chromosomes Cancer 1992; 4: 183-7.
  • Dierlamm J, Baens M, Stefanova-OuzounovaM, et al. Detection of t(ll;18)(q21;q21) by interphase fluorescence in situ hybridization using AP12 and MLT specific probes. Blood 2000; 96: 2215-8.
  • Rosenwald A, Ott G, Stilgenbauer S, et al. Exclusive detection of the t(ll;18)(q21;q21) in extranodal marginal zone B cell lymphomas (MZBL) of MALT type in contrast to other MZBL and extranodal large B cell lymphomas. Am J Pathol 1999; 155: 1817-21.
  • Remstein E, James C, Kurtin P. Incidence and subtype specificity of API2-MALT1 fusion translocations in extranodal, nodal, and splenic marginal zone lymphomas. Am J Pathol 2000; 156: 1183-8.
  • Dierlamm J, Baens M, Wlodarska I, et al. The apoptosis inhibitor gene API2 and a novel 18q gene, MLT, are recurrently rearranged in the t(ll;18)(q21;q21) associated with mucosa-associated lymphoid tissue lymphomas. Blood 1999; 93: 3601-9.
  • Akagi T,Motegi M,Tamura A,et al. Anovel gene, MALTl at 18q21, is involved in t(ll;18)(q21;q21 ) found in low-grade B-cell lymphoma of mucosa-associated lymphoid tissue. Oncogene 1999; 18:5785-94.
  • Motegi M, Yonezumi M, Suzuki H, et al. API2-MALTl cHmeric transcripts involved in mucosa-associated lymphoid tissue type lymphoma predict heterogeneous products. Am J Pathol 2000; 156: 807-12.
  • Kalla J, Stilgenbauer S, Schaffner C, et al. Heterogeneity of the API2-MALT1 gene rearrangement in MALT-type lymphoma. Leuke-mia 2000; 14: 1967-74.
  • Inagaki H, Okabe M, Seto M, Nakamura S, Ueda R, Eimoto T. API2-MALT1 fusion transcripts involved in mucosa-associated lymphoid tissue lymphoma: multiplex RT-PCR detection using formalin-fixed paraffin-embedded specimens. Am J Pathol 2001; 158: 699-706.
  • LaCasse EC, Baird S, Korneluk RG, MacKenzie AE. The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogens 1998; 17: 3247-59.
  • Baens M, Maes B, Steyls A, Geboes K, Marynen P, De Wolf-Peeters C. The product of the t(ll;18), an API2-MLT fusion, marks nearly half of gastric MALT type lymphomas without large cell proliferation. Am J Pathol 2000; 156: 1433-9.
  • Lucas PC, Yonezumi M, Inohara N, et al. Bcl10 and MALTl, independent targets of chromosomal translocation in MALT lym-phoma, cooperate in a novel NF-kappaB signaling pathway. J Biol Chem 2001; 276: 19012-9.
  • Willis TG, Jadayel DM, Du MQ, et al. Bcl10 is involved in t(1;14)(p22;q32) of MALT B cell lymphoma and mutated in multiple tumor types. Cell 1999; 96: 35-45.
  • Zhang Q, Siebert R, Van M, et al. Inactivating mutations and overexpression of BCL 10, a caspase recruitment domain-containing gene, in MALT lymphoma with t(1;14)(p22;q32). Nat Genet 1999; 22: 63-8.
  • May MJ, Ghosh S. Signal transduction through NF-kappa B. Immimol Today 1998; 19: 80-8.
  • Hofmann K. The modular nature of apoptotic signaling proteins. Cell MoI Life Sci 1999; 55: 1113-28.
  • Achuthan R, Bell SM, Leek JP, et al. Novel translocation of the BCL10 gene in a case of mucosa associated lymphoid tissue lymphoma. Genes Chromosomes Cancer 2000; 29: 347-9.
  • Du MQ, Peng H, Liu H, et al. BCLlO gene mutation in lymphoma. Blood 2000; 95: 3885-90.
  • Chesi M, Nardini E, Brents LA, et al. Frequent translocation t(4;14)(pl6.3;q32.3) in multiple myeloma is associated with increased expression and activating mutations of fibroblast growth factor receptor 3. Nat Genet 1997; 16: 260-4.
  • Finelli P, Fabris S, Zagano S, et al. Detection of t(4;14)(p16.3;q32) chromosomal translocation in multiple myeloma by double-color fluorescent in situ hybridization. Blood 1999; 94: 724-32.
  • Avet-Loiseau H, Li JY, Facon T, et al. High incidence of translocations t(11;14)(ql3;q32) and t(4;14)(p!6;q32) in patients with plasma cell malignancies. Cancer Res 1998; 58: 5640-5.
  • Chesi M, Brents LA, Ely SA, et al. Activated fibroblast growth factor receptor 3 is an oncogene that contributes to tumor progression in multiple myeloma. Blood 2001; 97: 729-36.
  • Kanai M, Goke M, Tsunekawa S, Podolsky DK. Signal transduction pathway of human fibroblast growth factor receptor 3. Identification of a novel 66-kDa phosphoprotein. J Biol Chem 1997; 272: 6621-8.
  • Ho IC, Hodge MR, Rooney JW, Glimcher LH. The proto-oncogene c-maf is responsible for tissue-specific expression of interleukin-4. Cell 1996; 85: 973-83.
  • Sawyer JR, Lukacs JL, Munshi N, et al. Identification of new nonrandom translocations in multiple myeloma with multicolor spectral karyotyping. Blood 1998; 92: 4269-78.
  • Bednarek AK, Laflin KJ, Daniel RL, Liao Q, Hawkins KA, Aldaz CM. WWOX, a novel WW domain-containing protein mapping to human chromosome 16q23.3-24.1, a region frequently affected in breast cancer. Cancer Res 2000; 60: 2140-5.
  • Ried K, Finnis M, Hobson L, et al. Common chromosomal fragile site FRA16D sequence: identification of the FOR gene spanning FRA16D and homozygous deletions and translocation breakpoints in cancer cells. Hum MoI Genet 2000; 9: 1651-63.
  • Chesi M, Kuehl WM, Bergsagel PL. Recurrent immunoglobulin gene translocations identify distinct molecular subtypes of myeloma. Ann Oncol 2000; 11: 131-5.
  • Iida S, Rao PH, Butler M, et al. Deregulation of MUM1/IRF4 by chromosomal translocation in multiple myeloma. Nat Genet 1997; 17: 226-30.
  • Yoshida S, Nakazawa N, Iida S, et al. Detection of MUMl/IRF4-IgH fusion in multiple myeloma. Leukemia 1999; 13: 1812-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.