25
Views
1
CrossRef citations to date
0
Altmetric
Review

The role of molecular studies in lymphoma diagnosis: a review

, , , , , & show all
Pages 19-44 | Received 08 Nov 2003, Accepted 15 Nov 2003, Published online: 06 Jul 2009

References

  • Bagg A, Kallakury BVS. Molecular pathology of leukemia and lymphoma. Am J Clin Pathol 1999; 112: S76—S92.
  • Macintyre EA, Delabesse E. Molecular approaches to the diagnosis and evaluation of lymphoid malignancies. Semin Hematol 1999; 36: 373–89.
  • Arber DA. Molecular diagnostic approach to non-Hodgkin's lymphoma. J Molec Diagn 2000; 2: 178–90.
  • Cossman J, Fend F, Staudt LM, Raffeld M. Application of molecular genetics to the diagnosis and classification of malignant lymphoma. In: Knowles DM, editor. Neoplastic Hematopathology. Philadelphia: Lippincott Williams Wilkins, 2001; 365–90.
  • Campo E, van de Rijn M, chairpersons. Symposium 30: molecular diagnosis of lymphoma. Histopathol 2002; 41: 506–25.
  • Sen F, Vega F, Medeiros J. Molecular genetic methods in diagnosis of hematologic neoplasms. Semin Diagn Pathol 2002; 19: 72–93.
  • Vega F, Medeiros Li. Chromosomal translocations involved in non-Hodgkin lymphomas. Arch Pathol Lab Med 2003; 127: 1148–60.
  • Spagnolo DV, Taylor J, Carrello S, et al. Southern blot analysis of lymphoproliferative disorders: use and limitations in routine surgical pathology. Pathology 1994; 26: 268–75.
  • Langerak AW, van Krieken JHJM, Wolvers-Tettero ILM, et al. The role of molecular analysis of immunoglobulin and T cell receptor gene rearrangements in the diagnosis of lymphoproliferative disorders. J Clin Pathol 2001; 54: 565–7.
  • Papadopoulos K, Bagg A, Bezwoda WR, Mendelow BV. The routine diagnostic utility of immunoglobulin and T-cell receptor gene rearrangements in lymphoproliferative disorders. Am J Clin Pathol 1989; 91: 633–8.
  • Davis RE, Warnke RA, Dorfman RF, Cleary ML. Utility of molecular genetic analysis for the diagnosis of neoplasia in morphologically and immunophenotypically equivocal hematolym-phoid lesions. Cancer 1991; 67: 2890–9.
  • Rodman SP. Determination of clonality in patients who present with diagnostic dilemmas: a laboratory experience and review of the literature. Leukemia 1997; 11: 852–62.
  • O'Leary Ti, Brindza L, Kant JA, et al. Immunoglobulin and T-cell receptor gene rearrangement assays; approved guidelines. NCCLS 1995; 15: 1–28.
  • Bolufer P, Barragan E, Sanz MA, et al. Preliminary experience in external quality control of RT-PCR PML-RARce detection in promyelocytic leukemia. Leukemia 1998; 12: 2024–8.
  • Johnson PW, Swinbank K, MacLennan S, et al. Variability of polymerase chain reaction detection of the bc1-2-IgH translocation in an international multicentre study. Ann Oncol 1999; 10: 1349–54.
  • O'Leary Ti, Ben-Ezra J, Domer PH, et al. Nucleic acid amplification assays for molecular hematopathology; proposed guidelines. NCCLS 2000; 20: 1–96.
  • Thériault C, Galoin S, Valmary S, et al. PCR analysis of immunoglobulin heavy chain (IgH) and TCR-7 chain gene rearrangements in the diagnosis of lymphoproliferative disorders: results of a study of 525 cases. Mod Pathol 2000; 13: 1269–79.
  • Arber DA, Braziel RM, Bagg A, Bijwaard KE. Evaluation of T cell receptor testing in lymphoid neoplasms: results of a multicenter study of 29 extracted DNA and paraffin-embedded samples. J Mol Diagn 2001; 3: 133–40.
  • Bagg A, Braziel RM, Arber DA, et al. Immunoglobulin heavy chain gene analysis in lymphomas. A multi-center study demonstrating the heterogeneity of performance of polymerase chain reaction assays. J Mol Diagn 2002; 4: 81–9.
  • Hsi ED, Tubbs RR, Lovell MA, et al. Detection of bc1-2IJH translocation by polymerase chain reaction. A summary of the experience of the molecular oncology survey of the College of American Pathologists. Arch Pathol Lab Med 2002; 126: 902–8.
  • Cleary ML, Chao J, Warnke R, Sklar J. Immunoglobulin gene rearrangement as a diagnostic criterion of B-cell lymphoma. Proc Natl Acad Sci USA 1984; 81: 593–7.
  • Korsmeyer S, Waldman TA. Immunoglobulin genes: rearrangement and translocation in human lymphoid malignancy. J Clin Immunol 1984; 4: 1–11.
  • Toyonaga B, Mak TW. Genes of the T-cell antigen receptor in normal and malignant T cells. Ann Rev Immunol 1987; 5: 585–620.
  • O'Connor NTJ, Gatter KC, Wainscoat JS, et al. Practical value of genotypic analysis for diagnosing lymphoproliferative disorders. J Clin Pathol 1987; 40: 147–50.
  • Kamat D, Laszewski MJ, Kemp JD, et al. The diagnostic utility of immunophenotyping and immunogenotyping in the pathologic evaluation of lymphoid proliferations. Mod Pathol 1990; 3: 105–12.
  • Spagnolo DV, Turbett GR, Dix B, Iacopetta B. Polymerase chain reaction and single-strand conformation polymorphism (PCR-SSCP): a novel means of detecting DNA mutations. Adv Anat Pathol 1994; 1: 61–77.
  • Van Dongen JJ, Wolvers-Tettero IL. Analysis of immunoglobulin and T cell receptor genes: Part II: possibilities and limitations in the diagnosis and management of lymphoproliferative diseases and related disorders. Clin Chim Acta 1991; 198: 93–174.
  • Beishuizen A, VerhoevenMol EJ, et al. Detection ofimmunoglobulin heavy-chain gene rearrangements by Southern blot analysis: recommendations for optimal results. Leukemia 1993; 7: 2045–53.
  • Langerak AW, Wolvers-Tettero ILM, van Dongen JJM. Detection of T cell receptor beta (TCRB) gene rearrangement patterns in T cell malignancies by Southern blot analysis. Leukemia 1999; 13: 965–74.
  • Medeiros Li, Carr J. Overview of the role of molecular methods in the diagnosis of malignant lymphomas. Arch Pathol Lab Med 1999; 123: 1189–207.
  • Cossman J, Zehnbauer B, Garret CT, et al. Gene rearrangements in the diagnosis of lymphoma/leukemia. Guidelines for use based on a multiinstitutional study. Am J Clin Pathol 1991; 93: 347–54.
  • Griesser H. Gene rearrangements and chromosomal translocations in T cell lymphoma-diagnostic applications and their limits. Virchows Arch 1995; 426: 323–8.
  • Weiss LM, Picker Li, Grogan TM, et al. Absence of clonal beta and gamma T-cell receptor gene rearrangements in a subset of peripheral T-cell lymphomas. Am J Pathol 1988; 130: 436–42.
  • Kneba M, Bolz I, Bergholz M, et al. Clinical characteristics of high-grade lymphomas with immune genes in germline configuration. Cancer 1991; 67: 603–9.
  • Smith JL, Hodges E, Howell WM, Jones DB. Genotypic hetero-geneity of node based peripheral T-cell lymphoma. Leukemia & Lymphoma 1993; 10: 273–9.
  • Pelicci P-G, Knowles DMI, Dalla Favera R. Lymphoid tumours displaying rearrangements of both immunoglobulin and T cell receptor genes. J Exp Med 1985; 162: 1015–24.
  • Knowles DM II. The human T-cell leukemias: clinical, cytomor-phologic, immunophenotypic, and genotypic characteristics. Hum Pathol 1986; 17: 14–33.
  • Chen YT, Godwin TA, Mouradian JA. Immunohistochemistry and gene rearrangement studies in the diagnosis of malignant lympho-mas: a comparison of 152 cases. Hum Pathol 1991; 22: 1249–57.
  • Krafft AE, Taubenberger JK, Sheng Z-M, et al. Enhanced sensitivity with a novel TCR7 PCR assay for clonality studies in 569 formalin-fixed, paraffin-embedded (FFPE) cases. Mol Diagn 1999; 4: 119–33.
  • Felix CA, Poplack DG, Reaman GH, et al. Characterization of immunoglobulin and T-cell receptor gene patterns in B-cell precursor acute lymphoblastic leukemia of childhood. J Clin Oncol 1990; 8: 431–42.
  • Beishuizen A, Verhoeven MA, van Wering ER, et al. Analysis of Ig and T-cell receptor genes in 40 childhood acute lymphoblastic leukemias at diagnosis and subsequent relapse: implications for the detection of minimal residual disease by polymerase chain reaction analysis. Blood 1994; 83: 2238–47.
  • Cossman J, Uppenkamp M, Sundeen J, et al. Molecular genetics and the diagnosis of lymphoma. Arch Pathol Lab Med 1988; 112: 117–27.
  • Aisenberg AC. Utility of gene rearrangements in lymphoid malignancies. Ann Rev Med 1993; 44: 75–84.
  • Pan LX, Diss TC, Isaacson PG. The polymerase chain reaction in histopathology. Histopathology 1995; 26: 201–17.
  • Segal GH. Assessment of B-cell clonality by the polymerase chain reaction: a pragmatic overview. Adv Anat Pathol 1996; 3: 195–203.
  • Diss TC, Pan L. Polymerase chain reaction in the assessment of lymphomas. Cancer Surv 1997; 30: 21–44.
  • Cairns SM, Taylor JM, Gould PR, Spagnolo DV. Comparative evaluation of PCR-based methods for the assessment of T cell clonality in the diagnosis of T cell lymphoma. Pathology 2002; 34: 320–5.
  • Slack DN, McCarthy KP, Wiedemann LM, Sloane JP. Evaluation of sensitivity, specificity, and reproducibility of an optimized method for detecting clonal rearrangements of immunoglobulin and T-cell receptor genes in formalin-fixed, paraffin-embedded sections. Diagn Mol Pathol 1993; 2: 223–32.
  • Albrecht S, Bruner JM, Segall GK. Immunoglobulin heavy chain rearrangements in primary brain lymphomas: A study using PCR to amplify CDR-III. J Pathol 1993; 169: 297–302.
  • Inagaki H, Nonaka M, Nagaya S, et al. Monoclonality in gastric lymphoma detected in formalin-fixed, paraffin-embedded endoscopic biopsy specimens using immunohistochemistry, in situ hybridization, and polymerase chain reaction. Diagn Mol Pathol 1995; 4: 32–8.
  • Wan JH, Sykes Pi, Orell SR, Morley AA. Rapid method for detecting monoclonality in B cell lymphoma in lymph node aspirates using the polymerase chain reaction. J Clin Pathol 1992; 45: 420–3 [Erratum: J Clin Pathol 1992; 45: 1124].
  • Chen YT, Mercer GO, Chen Y. Polymerase chain reaction-based detection of B-cell monoclonality in cytologic specimens. Arch Pathol Lab Med 1993; 117: 1099–103.
  • Frank TS, Svoboda-Newman SM, Hsi ED. Comparison of methods for extracting DNA from formalin-fixed paraffin sections for nonisotopic PCR. Diagn Mol Pathol 1996; 5: 220–4.
  • Weirich G, Funk A, Hoepner I, et al. PCR-based assays for the detection of monoclonality in non-Hodgkin's lymphoma: application to formalin-fixed, paraffin-embedded tissue and decalcified bone marrow samples. J Mol Med 1995; 73: 235–41.
  • Braunschweig R, Baur AS, Delacrétaz F, et al. Contribution of IgH-PCR to the evaluation of B-cell lymphoma involvement in paraffin-embedded bone marrow biopsy specimens. Am J Clin Pathol 2003; 119: 634–42.
  • Coad JE, Olson DJ, Christensen DR, et al. Correlation of PCR-detected clonal gene rearrangements with bone marrow morphology in patients with B-lineage lymphomas. Am J Surg Pathol 1997; 12: 1047–56.
  • Födinger M, Winkler K, Mannhalter C, Chott A. Combined polymerase chain reaction approach for clonality detection in lymphoid neoplasms. Diagn Mol Pathol 1999; 8: 80–91.
  • Sukpanichnant S, Vnencak-Jones CL, McCurley TL. Detection of clonal immunoglobulin heavy chain gene rearrangements by poly-merase chain reaction in scrapings from archival hematoxylin and eosin-stained histologic sections: implications for molecular genetic studies of focal pathologic lesions. Diagn Mol Pathol 1993; 2: 168–76.
  • Alkan S, Lehman C, Sarago C, et al. Polymerase chain reaction detection of immunoglobulin gene rearrangement and bc1-2 trans-location in archival glass slides of cytologic material. Diagn Mol Pathol 1995; 4: 25–31.
  • Grosso LE, Collins BT. DNA polymerase chain reaction using fine needle aspiration biopsy smears to evaluate non-Hodgkin's lym-phoma. Acta Cytol 1999; 43: 837–41.
  • Pan L, Diss TC, Peng HZ, Isaacson PG. Clonality analysis of defined B-cell populations in archival tissue sections using microdissection and the polymerase chain reaction. Histopathol 1994; 24: 323–7.
  • Marafioti T, Hummel M, Foss H-D, et al. Hodgkin and Reed-Sternberg cells represent an expansion of a single clone originating from a germinal centre B-cell with functional immunoglobulin gene rearrangements but defective immunoglobulin transcription. Blood 2000; 95: 1443–50.
  • Wan JH, Trainor KJ, Brisco MJ, Morley AA. Monoclonality in B cell lymphoma detected in paraffin wax embedded sections using the polymerase chain reaction. J Clin Pathol 1990; 43: 888–90.
  • Reed Ti, Reid A, Wallberg K, et al. Determination of B-cell clonality in paraffin-embedded lymph nodes using the polymerase chain reaction. Diagn Mol Pathol 1993; 2: 42–9.
  • Inghirami G, Szabolcs MJ, Yee HT, et al. Detection of immuno-globulin gene rearrangement of B cell non-Hodgkin's lymphomas and leukemias in fresh, unfixed and formalin-fixed, paraffin-embedded tissue by polymerase chain reaction. Lab Invest 1993; 68: 746–57.
  • Chen YT, Whitney KD, Chen Y. Clonality analysis of B cell lymphoma in fresh-frozen and paraffin-embedded tissues: the effects of variable polymerase chain reaction parameters. Mod Pathol 1994; 7: 429–34.
  • Diss TC, Pan L, Peng H, et al. Sources of DNA for detecting B cell monoclonality using PCR. J Clin Pathol 1994; 47: 493–6.
  • Greiner TC, Rubocki RJ. Effectiveness of capillary electrophoresis using fluorescent-labeled primers in detecting T-cell receptor 7 gene rearrangements. J Mol Diagn 2002; 4: 137–43.
  • Greer CE, Lund JK, Manos MM. PCR amplification from paraffin-embedded tissues: recommendations on fixatives for long-term storage and prospective studies. PCR Methods Appl 1991; 1: 46–50.
  • Camilleri-Broet S, Devez F, Tissier F, et al. Quality control and sensitivity of polymerase chain reaction techniques for the assessment of immunoglobulin heavy chain gene rearrangements from fixed- and paraffin-embedded samples. Ann Diagn Pathol 2000; 4: 71–6.
  • Sarsfield P, Wickham CL, Joyner MV, et al. Formic acid decalcification of bone marrow trephines degrades DNA: alternative use of EDTA allows the amplification and sequencing of relatively long PCR products. J Clin Pathol: Mol Pathol 2000; 53: 336–7 [Erratum: J Clin Pathol: Mol Pathol 2001; 54: 120].
  • Sato Y, Sugie R, Tsuchiya B, et al. Comparison of the DNA extraction methods for polymerase chain reaction amplification from formalin-fixed and paraffin-embedded tissues. Diagn Mol Pathol 2001; 10: 265–71.
  • Stefanoff CG, Hassan R, Gonzalez AC, et al. Laboratory strategies for efficient handling of paraffin-embedded tissues for molecular detection of clonality in non-Hodgkin lymphomas. Diagn Mol Pathol 2003; 12: 79–87.
  • Hoeve MA, Krol ADG, Phillipo K, et al. Limitations of clonality analysis of B cell proliferations using CDR3 polymerase chain reaction. J Clin Pathol: Mol Pathol 2000; 53: 194–200.
  • van der Velden VHJ, Hochhaus A, Cazzaniga G, et al. Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia 2003; 17: 1013–34.
  • Greiner TC, Raffeld M, Lutz C, et al. Analysis of T cell receptor-7 gene rearrangements by denaturing gradient gel electrophoresis of GC-clamped polymerase chain reaction products. Am J Pathol 1995; 146: 46–55.
  • Theodorou I, Bigorgne C, Delfau M-H, et al. Vi rearrangements of the TCR7 locus in peripheral T-cell lymphomas: analysis by polymerase chain reaction and denaturing gradient gel electrophor-esis. J Pathol 1996; 178: 303–10.
  • Langerak AW, Szczepanski T, Van der Burg M, et al. Heteroduplex PCR analysis of rearanged T cell receptor genes for clonality assessment in suspect T cell proliferations. Leukemia 1997; 11: 2192–9.
  • Vega F, Medeiros Li, Jones D, et al. A novel four-color PCR assay to assess T-cell receptor gamma gene rearrangements in lymphopro-liferative lesions. Am J Clin Pathol 2001; 116: 17–24.
  • Alkan S, Cosar E, Ergin M, Hsi E. Detection of T-cell receptor-gamma gene rearrangement in lymphoproliferative disorders by temperature gradient gel electrophoresis. Arch Pathol Lab Med 2001; 125: 202–7.
  • Zhu D, Kadin M, Samaszuk M. Detection of clonal T-cell receptor-gamma gene rearrangement by PCR/temporal temperature gradient gel electrophoresis. Am J Clin Pathol 2001; 116: 527–34.
  • Chhanabhai M, Adomat SA, Gascoyne RD, Horsman DE. Clinical utility of heteroduplex analysis of TCR gamma gene rearrangements in the diagnosis of T-cell lymphoproliferative disorders. Am J Clin Pathol 1997; 108: 295–301.
  • Davis TH, Yockey CE, Balk SP. Detection of clonal immunoglo-bulin gene rearrangements by polymerase chain reaction amplifica-tion and single-strand conformational polymorphism analysis. Am J Pathol 1993; 142: 1841–7.
  • Kaul K, Petrick M, Herz B, Cheng TC. Detection of clonal rearrangements of the T-cell receptor gamma gene by polymerase chain reaction and single strand conformation polymorphism (PCR-SSCP). Mol Diagn 1996; 1: 131–7.
  • Signoretti S, Murphy M, Cangi MG, et al. Detection of clonal T-cell receptor gamma gene rearrangements in paraffin-embedded tissue by polymerase chain reaction and nonradioactive single-strand con-formational polymorphism analysis. Am J Pathol 1999; 154: 67–75.
  • Wickham CL, Lynas C, Ellard S. Detection of clonal T cell populations by high resolution PCR using fluorescently labelled nucleotides: evaluation using conventional LIS-SSCP. Mol Pathol 2000; 53: 150–4.
  • Volkenandt M, Wienecke R, Koch OM, et al. Conformational polymorphisms of cRNA of T-cell-receptor genes as a clone-specific molecular marker for cutaneous lymphoma. J Invest Dermatol 1993; 101: 514–6.
  • Koch OM, Probst M, Tiemann M, et al. Detection of clonal T-cell populations in gastrointestinal lymphomas by analysis of cRNA conformational polymorphisms of rearranged T-cell-receptor-gamma genes. Br J Haematol 1994; 86: 316–21.
  • Linke B, Bolz I, Fayyazi A, et al. Automated high resolution PCR fragment analysis for identification of clonally rearranged immuno-globulin heavy chain genes. Leukemia 1997; 11: 1055–62.
  • Derksen PW, Langerak AW, Kerkhof E, et al. Comparison of different polymerase chain reaction-based approaches for clonality assessment of immunoglobulin heavy-chain gene rearrangements in B-cell neoplasia. Mod Pathol 1999; 12: 794–805.
  • Beaubier NT, Hart AP, Bartolo C, et al. Comparison of capillary electrophoresis and polyacrylamide gel electrophoresis for the evaluation of T and B cell clonality by polymerase chain reaction. Diagn Mol Pathol 2000; 9: 121–31.
  • Meier VS, Rufle A, Gudat F. Simultaneous evaluation of T- and B-cell clonality, t(11;14) and t(14;18), in a single reaction by a four-color multiplex polymerase chain reaction assay and automated high-resolution fragment analysis: a method for the rapid molecular diagnosis of lymphoproliferative disorders applicable to fresh frozen and formalin-fixed, paraffin-embedded tissues, blood, and bone marrow aspirates. Am J Pathol 2001; 159: 2031–43.
  • Lukowsky A. Clonality analysis by T-cell receptor 7 gene PCR and high-resolution electrophoresis in the diagnosis of cutaneous T-cell lymphoma (CTCL). Methods Mol Biol 2003; 218: 303–20.
  • Luo V, Lessin SR, Wilson RB, et al. Detection of clonal T-cell receptor 7 gene rearrangements using fluorescent-based PCR and automated high-resolution capillary electrophoresis. Mol Diagn 2001; 6: 169–79.
  • Sandberg Y, Heule F, Lam K, et al. Molecular immunoglobulin/T-cell receptor clonality analysis in cutaneous lymphoproliferations: Experience with the BIOMED-2 standardized polymerase chain reaction protocol. Haematologica 2003; 88: 659–70.
  • Dippel E, Assaf C, Hummel M, et al. Clonal T-cell receptor 7-chain gene rearrangement by PCR-based GeneScan analysis in advanced cutaneous T-cell lymphoma: a critical evaluation. J Pathol 1999; 188: 146–54.
  • Lee S-C, Berg KD, Racke FK, et al. Pseudo-spikes are common in histologically benign lymphoid tissues. J Mol Diagn 2000; 2: 145–52.
  • Diss TC, Watts M, Pan LX, et al. The polymerase chain reaction in the demonstration of monoclonality in T cell lymphomas. J Gun Pathol 1995; 48: 1045–50.
  • Langerak AW, San Miguel JF, Parreira A, et al. Clonality analysis in malignant lymphoma: the BIOMED-2 experience. Histopathol 2002; 41: 506–8.
  • Van Krieken JHJM, Langerak AW, San Miguel JF, et al. Clonality analysis for antigen receptor genes: preliminary results from the Biomed-2 Concerted Action PL 96-3936. Hum Pathol 2003; 34: 359–61.
  • Gong JZ, Zheng S, Chiarle R, et al. Detection of immunoglobulin kappa light chain rearrangements by polymerase chain reaction: An improved method for detecting clonal B-cell lymphoproliferative disorders. Am J Pathol 1999; 155: 355–63.
  • Diss DC, Liu HX, Du MQ, Isaacson PG. Improvements to B cell clonality analysis using PCR amplification of immunoglobulin light chain genes. Mol Pathol 2002; 55: 98–101.
  • Ayling JF, Iland Hi. High-resolution analysis of gene rearrange-ments in lymphoid malignancies. Pathology 1999; 31: 252–6.
  • Kallenbach S, Doyen N, D'Andon MF, Rougeon F. Three lymphoid-specific factors account for all junctional diversity characteristic of somatic assembly of T-cell receptor and immuno-globulin genes. Proc Natl Acad Sci 1992; 89: 2799–803.
  • Trainor KJ, Brisco MJ, Story CJ, Morley AA. Monoclonality in B-lymphoproliferative disorders detected at the DNA level. Blood 1990; 75: 2220–2.
  • Ramasamy I, Brisco M, Morley A. Improved PCR method for detecting monoclonal immunoglobulin heavy chain rearrangement in B cell neoplasms. J Clin Pathol 1992; 45: 770–5.
  • Segal GH, Wittwer CT, Fishleder Ai, et al. Identification of monoclonal B-cell populations by rapid cycle polymerase chain reaction: a practical screening method for the detection of immunoglobulin gene rearrangements. Am J Pathol 1992; 141: 1291–7.
  • Diss TC, Peng H, Wotherspoon AC, et al. Detection of mono-clonality in low-grade B-cell lymphomas using the polymerase chain reaction is dependent on primer selection and lymphoma type. J Pathol 1993; 169: 291–5.
  • Segal GH, Jorgensen T, Masih AS, Braylan RC. Optimal primer selection for clonality assessment by polymerase chain reaction analysis: I. Low grade B-cell lymphoproliferative disorders of nonfollicular center cell type. Hum Pathol 1994; 25: 1269–75.
  • Segal GH, Jorgensen T, Scott M, Braylan RC. Optimal primer selection for clonality assessment by polymerase chain reaction analysis: II. Follicular lymphomas. Human Pathology 1994; 25: 1276–82.
  • Achille R, Scarpa A, Montresor M, et al. Routine application of polymerase chain reaction in the diagnosis of monoclonality of B-cell lymphoid proliferations. Diagn Mol Pathol 1995; 4: 14–24.
  • Aubin J, Davi F, Nguyen-Salomon F, et al. Description of a novel FRI IgH PCR strategy and its comparison with three other strategies for the detection of clonality in B cell malignancies. Leukemia 1995; 9: 471–9.
  • Lozano MD, Tierens A, Greiner TC, et al. Clonality analysis of B-lymphoid proliferations using the polymerase chain reaction. Cancer 1996; 77: 1349–55.
  • Deane M, McCarthy KP, Wiedemann LM, Norton JD. An improved method for detection of B-lymphoid clonality by polymerase chain reaction. Leukemia 1991; 5: 726–30.
  • Gleissner B, Maurer J, Thiel E. Detection of immunoglobulin heavy chain genes rearrangements in B-cell leukemias, lymphomas, multiple myelomas, monoclonal and polyclonal gammopathies. Leuk Lym-phoma 2000; 39: 151–5.
  • Lombardo JF, Hwang TS, Maiese RL, et al. Optimal primer selection for clonality assessment by polymerase chain reaction analysis. III: Intermediate and high-grade B-cell neoplasms. Hum Pathol 1996; 27: 373–80.
  • Lim LC, Segal GH, Wittwer CT. Detection of bc1-1 gene rearrangement and B-cell clonality in mantle cell lymphoma using formalin-fixed, paraffin-embedded tissues. Am J Clin Pathol 1995; 104: 689–5.
  • Abdel-Reheim F, Edwards E, Arber DA. Utility of a rapid polymerase chain reaction panel for the detection of molecular changes in B-cell lymphoma. Arch Pathol Lab Med 1996; 120: 357–63.
  • Linke B, Pyttlich J, Tiemann M, et al. Identification and structural analysis of rearranged immunoglobulin heavy chain genes in lymphomas and leukemias. Leukemia 1995; 9: 840–7.
  • Tierens A, Lozano MD, Wickert R, et al. High-resolution analysis of immunoglobulin heavy-chain gene rearrangements using denaturing gradient gel electrophoresis. Diagn Mol Pathol 1996; 5: 159–65.
  • Thunberg U, Rosenquist R, Lindström A, et al. Comparative evaluation of detection systems for evaluation of PCR amplified immunoglobulin heavy-chain gene rearrangements. Diagn Mol Pathol 1997; 6: 140–6.
  • McCarthy KP, Sloane JP, Wiedemann LM. Rapid method for distinguishing clonal from polyclonal B cell populations in surgical biopsy specimens. J Clin Pathol 1990; 43: 429–32.
  • Sioutos N, Bagg A, Michaud GY, et al. Polymerase chain reaction versus Southern blot hybridization. Detection of immunoglobulin heavy-chain gene rearrangements. Diagn Mol Pathol 1995; 4: 8–13.
  • Trainor KJ, Brisco MJ, Neoh S, et al. Gene rearrangement in B- and T-lymphoproliferative disease detected by the polymerase chain reaction. Blood 1991; 78: 192–6.
  • Al Saati T, Galoin S, Gravel S, et al. IgH and TcR-7 gene rearrangements identified in Hodgkin's disease by PCR demonstrate lack of correlation between genotype, phenotype, and Epstein-Barr virus status. J Pathol 1997; 181: 387–93.
  • Lorenzen J, Li G, Zhao-Hohn M, et al. Angioimmunoblastic lymphadenopathy type of T-cell lymphoma and angioimmunoblastic lymphadenopathy: a clinicopathological and molecular biological study of 13 Chinese patients using polymerase chain reaction and paraffin-embedded tissues. Virchows Archiv 1994; 424: 593–600.
  • Staib G, Sterry W. Use of polymerase chain reaction in the detection of clones in lymphoproliferative disease of the skin. Recent Results Cancer Res 1995; 139: 239–47.
  • Bottaro M, Berti E, Biondi A, et al. Heteroduplex analysis of T-cell receptor 7 gene rearrangements for diagnosis and monitoring of cutaneous T-cell lymphomas. Blood 1994; 83: 3271–8.
  • Bachelez H, Bioul L, Flageul B, et al. Detection of clonal T-cell receptor 7 gene rearrangements with the use of the polymerase chain reaction in cutaneous lesions of mycosis fungoides and Sezary syndrome. Arch Dermatol 1995; 131: 1027–31.
  • Theodorou I, Delfau-Larue M-H, Bigorgne C, et al. Cutaneous T-cell infiltrates: analysis of T-cell receptor 7 gene rearrangement by polymerase chain reaction and denaturing gradient gel electro-phoresis. Blood 1995; 86: 305–10.
  • Veelken H, Wood GS, Sklar J. Molecular staging of cutaneous T-cell lymphoma: evidence for systemic involvement in early disease. J Invest Dermatol 1995; 104: 889–94.
  • Yu RC, Alaibac M. A rapid polymerase chain reaction-based technique for detecting clonal T-cell receptor gene rearrangements in cutaneous T-cell lymphomas of both the alpha beta and gamma delta varieties. Diagn Mol Pathol 1996; 5: 121–6.
  • Lukowsky A, Richter S, Dijkstal K, et al. A T-cell receptor 7 polymerase chain reaction assay using capillary electrophoresis for the detection of cutaneous T-cell lymphomas. Diagn Mol Pathol 2002; 11: 59–66.
  • Lefranc M-P, Rabbitts TH. The human T-cell receptor 7 (TRG) genes. TIBS 1989; 14: 214–8.
  • Bourguin A, Tung R, Galili N, Sklar J. Rapid, nonradioactive detection of clonal T-cell receptor gene rearrangements in lymphoid neoplasms. Proc Natl Acad Sci U S A 1990; 87: 8536–40.
  • Volkenandt M, Soyer HP, Kerl H, Bertino JR. Development of a highly specific and sensitive molecular probe for detection of cutaneous lymphoma. J Invest Dermatol 1991; 97: 137–40.
  • McCarthy KP, Sloane JP, Kabarowski JH, et al. A simplified method of detection of clonal rearrangements of the T-cell receptor-7 chain gene. Diagn Mol Pathol 1992; 1: 173–9.
  • Lorenzen J, Jux G, M Z-H, et al. Detection of T-cell clonality in paraffin-embedded tissues. Diagn Mol Pathol 1994; 3: 93–9.
  • Födinger M, Buchmayer H, Schwarzinger I, et al. Multiplex PCR for rapid detection of T-cell receptor-gamma chain gene rearrangements in patients with lymphoproliferative diseases. Br J Haematol 1996; 94: 136–9.
  • Delabesse E, Burtin ML, Millien C, et al. Rapid multifluorescent TCRG V7 and J7 typing: application to T cell acute lymphoblastic leukemia and to the detection of minor clonal populations. Leukemia 2000; 14: 1143–52.
  • Wood GS, Uluer AZ. Polymerase chain reaction/denaturing gradient gel electrophoresis (PCR/DGGE): sensitivity, band pattern analysis, and methodologic optimization. Am J Dermatopathol 1999; 21: 547–51.
  • Kneba M, Bolz I, Linke B, et al. Characterization of clone-specific rearrangement T-cell receptor gamma-chain genes in lymphomas and leukemias by the polymerase chain reaction and DNA sequencing. Blood 1994; 84: 574–81.
  • Murphy M, Signoretti S, Kadin ME, Loda M. Detection of TCR-gamma gene rearrangements in early mycosis fungoides by non-radioactive PCR-SSCP. J Cutan Pathol 2000; 27: 228–34.
  • Simon M, Kind P, Kaudewitz P, et al. Automated high-resolution polymerase chain reaction fragment analysis: A method for detecting T-cell receptor 7-chain gene rearrangements in lymphoproliferative diseases. Am J Pathol 1998; 152: 29–33.
  • Sprouse JT, Werling R, Hanke D, et al. T-cell clonality determina-tion using polymerase chain reaction (PCR) amplification of the T-cell receptor gamma-chain gene and capillary electrophoresis of fluorescently labelled PCR products. Am J Clin Pathol 2000; 113: 838–50.
  • Benhattar J, Delacretez F, Martin P, et al. Improved polymerase chain reaction detection of clonal T-cell lymphoid neoplasms. Diagn Mol Pathol 1995; 4: 108–12.
  • Lukowsky A. Clonality analysis by T-cell receptor 7 gene PCR and high-resolution electrophoresis in the diagnosis of cutaneous T-cell lymphoma (CTCL). In: Terrian DM, editor. Cancer cell signalling: methods and protocols. Tolowa, NJ: Humana Press Inc, 2003; 303–20.
  • Ashton-Key M, Diss DC, Du MQ, et al. The value of the polymerase chain reaction in the diagnosis of cutaneous T-cell infiltrates. Am J Surg Pathol 1997; 21: 743–7.
  • Assaf C, Hummel M, Dippel E, et al. High detection rate of T-cell receptor beta chain rearrangements in T-cell lymphoproliferations by family specific polymerase chain reaction in combination with the GeneScan technique and DNA sequencing. Blood 2000; 96: 640–6.
  • McCarthy KP, Sloane JP, Kabarowski JH, et al. The rapid detection of clonal T-cell populations in patients with lymphoid disorders. Am J Pathol 1991; 138: 821–8.
  • Bahler DW. Diversity of T-cell antigen receptor variable genes used by mycosis fungoides cells. Am J Pathol 1992; 140: 1–8.
  • Hodges E, Edwards SE, Howell WM, Smith JL. Polymerase chain reaction amplification analyses of clonality in T-cell malignancy including peripheral T-cell lymphoma. Leukemia 1994; 8: 295–8.
  • McCarthy KP, Slack DN, Sloane JP. The polymerase chain reaction in diagnosing lymphoid disorders. Mol Biol Rep 1994; 19: 69–77.
  • Lynas C, Howe D, Copplestone JA, et al. A rapid and reliable PCR method for detecting clonal T cell populations. J Clin Pathol 1995; 48: M101–M104.
  • Kneba M, Bolz I, Linke B, Hiddemann W. Analysis of rearranged T-cell receptor beta-chain genes by polymerase chain reaction (PCR) DNA sequencing and automated high resolution PCR fragment analysis. Blood 1995; 86: 3930–7.
  • Zemlin M, Hummel M, Anagnostopoulos I, Stein H. Improved polymerase chain reaction detection of clonally rearranged T-cell receptor ri chain genes. Diagn Mol Pathol 1998; 7: 138–45.
  • Rabbitts TH. Chromosomal translocations in human cancer. Nature 1994; 372: 143–9.
  • Mitelman F, Mertens F, Johansson B. A breakpoint map of recurrent chromosomal rearrangements in human neoplasia. Nat Genet 1997; 15: 417–74.
  • Liu J, Johnson RM, Traweek ST. Rearrangement of the BCL-2 gene in follicular lymphoma: detection by PCR in both fresh and fixed tissue samples. Diagn Mol Pathol 1993; 2: 241–7.
  • Limpens J, Beelen M, Stad R, et al. Detection of the t(14;18) translocation in frozen and formalin-fixed tissue. Diagn Mol Pathol 1993; 2: 99–107.
  • Horsman DE, Gascoyne RD, Coupland RW, et al. Comparison of cytogenetic analysis, southern analysis, and polymerase chain reaction for the detection of t(14; 18) in follicular lymphoma. Am J Clin Pathol 1995; 103: 472–8.
  • Turner GE, Ross FM, Krajewski AS. Detection of t(14;18) in British follicular lymphoma using cytogenetics, Southern blotting and the polymerase chain reaction. Br J Haematol 1995; 89: 223–5.
  • Poteat HT, Sklar J. A simplified polymerase chain reaction assay for detection of chromosomal translocations in hematologic malignan-cies. Diagn Mol Pathol 1997; 6: 3–9.
  • Ladanyi M, Wang S. Detection of rearrangements of the BCL2 major breakpoint region in follicular lymphomas. Correlation of polymerase chain reaction results with Southern blot analysis. Diagn Mol Pathol 1992; 1: 31–5.
  • Ngan B-Y, Nourse J, Cleary ML. Detection of chromosomal translocation t(14;18) within the minor cluster region of Bc1-2 by polymerase chain reaction and direct genomic sequencing of the enzymatically amplified DNA in follicular lymphomas. Blood 1989; 73: 1759–62.
  • Estalilla OC, Medeiros LJ, Manning JTJ, Luthra R. 5'-3' exonuclease-based real-time PCR assays for detecting the t(14;18)(q32;q21): a survey of 162 malignant lymphomas and reactive specimens. Mod Pathol 2000; 13: 661–6.
  • Merup M, Spasokoukotskaja T, Einhorn S, et al. Bc1-2 rearrange-ments with breakpoints in both vcr and mbr in non-Hodgkin's lymphomas and chronic lymphocytic leukaemia. Br J Haematol 1996; 92: 647–52.
  • Albinger-Hegyi A, Hochreutener B, Abdou MT, et al. High frequency of t(14;18)-translocation breakpoints outside of major and minor cluster regions in follicular lymphomas: improved polymerase chain reaction protocols for their detection. Am J Pathol 2002; 160: 823–32.
  • Wang YL, Addya K, Edwards RH, et al. Novel bc1-2 breakpoints in patients with follicular lymphoma. Diagn Mol Pathol 1998; 7: 85–9.
  • Summers KE, Goff LK, Wilson AG, et al. Frequency of the Bc1-2/ IgH rearrangement in normal individuals: implications for the monitoring of disease in patients with follicular lymphoma. J Clin Oncol 2001; 19: 420–4.
  • Ohshima K, Kikuchi M, Kobari S, et al. Amplified bc1-2/JH rearrangements in reactive lymphadenopathy. Virchows Arch B Cell Pathol 1993; 63: 197–8.
  • Corbally N, L G, Keane MM, et al. Bc1-2 rearrangement in Hodgkin's disease and reactive lymph nodes. Am J Clin Pathol 1994; 101: 756–60.
  • Liu Y, Hernandez AM, Shibata D, Cortopassi GA. BCL2 translocation frequency rises with age in humans. Proc Natl Acad Sci USA 1994; 91: 8910–4.
  • Segal GH, Scott M, Jorgensen T, Braylan RC. Standard polymerase chain reaction analysis does not detect t(14;18) in reactive lymphoid hyperplasia. Arch Pathol Lab Med 1994; 118: 791–4.
  • Limpens J, Stad R, De Vlaam C, et al. Lymphoma-associated translocation t(14;18) in blood B cells of normal individuals. Blood 1995; 85: 2528–36.
  • Delage R, Jacques L, Massinga-Loembe M, et al. Persistent polyclonal B-cell lymphocytosis: further evidence for a genetic disorder associated with B-cell abnormalities. Br J Haematol 2001; 114: 666–70.
  • Gribben JG, Freedman AS, Neuberg D, et al. Immunologic purging of marrow assessed by PCR before autologous bone marrow transplantation for B-cell lymphoma. N Engl J Med 1991; 325: 1525–33.
  • Negrin RS, Kiem H-P, Schmidt-Wolf IG, et al. Use of the polymerase chain reaction to monitor the effectiveness of ex vivo tumor cell purging. Blood 1991; 77: 654–60.
  • Gribben JG, Nadler LM. Detection of minimal residual disease in patients with lymphomas using the polymerase chain reaction. Important Adv Oncol 1991; 1994: 117–29.
  • Rambaldi A, Lazzari M, Manzoni C, et al. Monitoring of minimal resudal disease after CHOP and rituximab in previously untreated patients with follicular lymphoma. Blood 2002; 99: 856–62.
  • Bohling SD, King TC, Wittwer CT, Elenitoba-Johnson KJS. Rapid simultaneous amplification and detection of the MBR/JH chromosomal translocation by fluorescence melting curve analysis. Am J Pathol 1999; 154: 97–103.
  • Olsson K, Gerard CJ, Zehnder J, et al. Real-time t(11;14) and t(14;18) PCR assays provide sensitive and quantitative assessments of minimal residual disease (MRD). Leukemia 1999; 13: 1833–42.
  • Ladetto M, Sametti S, Donovan JW, et al. A validated real-time quantitative PCR approach shows a correlation between tumor burden and successful ex vivo purging in follicular lymphoma patients. Exp Hematol 2001; 29: 183–93.
  • Sanchez-Vega B, Vega F, Medeiros Li, et al. Quantification of bc1-21 JH fusion sequences and a control gene by multiplex real-time PCR coupled with automated amplicon sizing by capillary electrophoresis. J Mol Diagn 2002; 4: 223–9.
  • Sanchez-Vega B, Vega F, Hai S, et al. Real-time t(14;18)(q32;q21) PCR assay combined with high-resolution capillary electrophoresis: a novel and rapid approach that allows accurate quantitation and size determination of bc1-2IJH fusion sequences. Mod Pathol 2002; 15: 448–53.
  • Taniwaki M, Nishida K, Ueda Y, et al. Interphase and metaphase detection of the breakpoint of 14q32 translocations in B-cell malignancies by double-color fluorescence in situ hybridization. Blood 1995; 85: 3223–8.
  • Poetsch M, Weber-Matthiesen K, Plendl Hi, et al. Detection of the t(14;18) chromosomal translocation by interphase cytogenetics with yeast-artificial-chromosome probes in follicular lymphoma and nonneoplastic lymphoproliferation. J Clin Oncol 1996; 14: 963–9.
  • Glassman AB, Hopwood V, Hayes KJ. Cytogenetics in the diagnosis of lymphomas. Ann Clin Lab Sci 2000; 30: 72–4.
  • Vaandrager JW, Schuuring E, Raap T, et al. Interphase FISH detection of BCL2 rearrangement in follicular lymphoma using breakpoint-flanking probes. Genes Chrom Cancer 2000; 27: 85–94.
  • Frater JL, Tsiftsakis EK, Hsi ED, et al. Use of novel t(11;14) and t(14;18) dual-fusion fluorescence in situ hybridization probes in the differential diagnosis of lymphomas of small lymphocytes. Diagn Mol Pathol 2001; 10: 214–22.
  • Haralambieva E, Kleiverda K, Mason DY, et al. Detection of three common translocation breakpoints in non-Hodgkin's lymphomas by fluorescence in situ hybridization on routine paraffin-embedded tissue. J Pathol 2002; 198: 163–70.
  • Raffeld M, Jaffe ES. Bc1-1, t(11;14), and mantle-cell derived lymphomas. Blood 1991; 78: 259–63.
  • Bosch F, Jares P, Campo E, et al. PRAD-I/cyclin D1 gene overexpression in chronic lymphoproliferative disorders: a highly specific marker of mantle cell lymphoma. Blood 1994; 84: 2726–32.
  • Bosch F, Campo E, Jares P, et al. Increased expression of the PRAD-1/CCNDI gene in hairy cell leukemia. Br J Haematol 1995; 91: 1025–30.
  • Athanasiou E, Kaloutsi V, Kotoula V, et al. Cyclin DI over-expression in multiple myeloma. A morphologic, immunohistochem-ical, and in situ hybridization study of 71 paraffin-embedded bone marrow biopsy specimens. Am J Clin Pathol 2001; 116: 535–42.
  • Vasef M, Medeiros J, Koo C, et al. Cyclin D1 immunohistochemical staining is useful in distinguishing mantle cell lymphoma from other low-grade B-cell neoplasms in bone marrow. Am J Clin Pathol 1997; 108: 302–7.
  • Jadayel D, Matutes E, Dyer MJ, et al. Splenic lymphoma with villous lymphocytes: analysis of BCL-1 rearrangements and expres-sion of the cyclin D1 gene. Blood 1994; 83: 3664–71.
  • Athanasiou E, Kotoula V, Hytiroglou P, et al. In situ hybridization and reverse transcription-polymerase chain reaction for cyclin DI mRNA in the diagnosis of mantle cell lymphoma in paraffin-embedded tissues. Mod Pathol 2001; 14: 62–71.
  • Bigoni R, Negrini M, Veronese ML, et al. Characterization of t(11;14) translocation in mantle cell lymphoma by fluorescent in situ hybridization. Oncogene 1996; 13: 797–802.
  • Zucca E, Soldati G, Schlegelberger B, et al. Detection of chromosome 11 alterations in blood and bone marrow by interphase cytogenetics in mantle cell lymphoma. Br J Haematol 1995; 89: 665–8.
  • Monteil M, Callanan M, Dascalescu C, et al. Molecular diagnosis of t(11;14) in mantle cell lymphoma using two-colour interphase fluorescence in situ hybridization. Br J Hematol 1996; 93: 656–60.
  • Avet-Loiseau H, Garand R, Gaillard F, et al. Detection of t(11;14) using interphase molecular cytogenetics in mantle cell lymphoma and atypical chronic lymphocytic leukemia. Genes Chrom Cancer 1998; 23: 175–82.
  • Siebert R, Matthiesen P, Harder S, et al. Application of interphase cytogenetics for the detection of t(11;14)(q13;q32) in mantle cell lymphomas. Ann Oncol 1998; 9: 519–26.
  • Li J-Y, Gaillard F, Moreau A, et al. Detection of translocation t(11;14)(q13;q32) in mantle cell lymphoma by fluorescence in situ hybridization. Am J Pathol 1999; 154: 1449–52.
  • Katz RL, Caraway NP, Gu J, et al. Detection of chromosome 11q13 breakpoints by interphase fluorescence in situ hybridization. A useful ancillary method for the diagnosis of mantle cell lymphoma. Am J Clin Pathol 2000; 114: 248–57.
  • Remstein ED, Kurtin Pi, Buno I, et al. Diagnostic utility of fluorescence in situ hybridization in mantle-cell lymphoma. Br J Haematol 2000; 110: 856–62.
  • Belaud-Rotureau M-A, Parrens M, Dubus P, et al. A comparative analysis of FISH, RT-PCR, PCR, and immunohistochemistry for the diagnosis of mantle cell lymphomas. Mod Pathol 2002; 15: 517–25.
  • Kodet R, Mrhalová M, Krskova L, et al. Mantle cell lymphoma: improved diagnostics using a combined approach of immunohis-tochemistry and identification of t(11;14)(q13;q32) by polymerase chain reaction and fluorescence in situ hybridization. Virchows Arch 2003; 442: 538–47.
  • Jalal SM, Law ME, Stamberg J, et al. Detection of diagnostically critical, often hidden, anomalies in complex karyotypes of haema-tological disorders using multicolour fluorescence in situ hybridiza-tion. Br J Haematol 2001; 112: 975–80.
  • De Boer CJ, Vaandrager JW, van Krieken JH, et al. Visualization of mono-allelic chromosomal aberrations 3' and 5' of the cyclin DI gene in mantle cell lymphoma using DNA fiber fluorescence in situ hybridization. Oncogene 1997; 15: 1599–603.
  • Vaandrager JW, Kleiverda JK, Schuuring E, et al. Cytogenetics on released DNA fibres. Verh Dtsch Ges Pathol 1997; 81: 306–11.
  • Luthra R, Hai S, Pugh WC. Polymerase chain reaction detection of the t(11;14) translocation involving the bc1-1 major translocation cluster in mantle cell lymphoma. Diagn Mol Pathol 1995; 4: 4–7.
  • Lasota J, Franssila K, Koo CH, Miettinen M. Molecular diagnosis of mantle cell lymphoma in paraffin-embedded tissue. Mod Pathol 1996; 9: 361–6.
  • Chibbar R, Leung K, McCormick S, et al. Bc1-1 gene rearrangements in mantle cell lymphoma: a comprehensive analysis of 118 cases, including B5-fixed tissue, by polymerase chain reaction and Southern transfer. Mod Pathol 1998; 11: 1089–97.
  • Luthra R, Sarris AH, Paladugu AV, et al. Real-time 5'->3' exonuclease-based PCR assay for detection of t(11;14)(q13;q32). Am J Clin Pathol 1999; 112: 524–30.
  • Pinyol M, Campo E, Nadal A, et al. Detection of the bc1-1 rearrangement at the major translocation cluster in frozen and paraffin-embedded tissues of mantle cell lymphomas by polymerase chain reaction. Am J Clin Pathol 1996; 105: 532–7.
  • Fan H, Gulley ML, Gascoyne RD, et al. Molecular methods for detecting t(11;14) translocations in mantle-cell lymphomas. Diagn Mol Pathol 1998; 7: 209–14.
  • Luthra R, McBride JA, Cabanillas F, Sarris A. Novel 5' exonuclease-based real-time PCR assay for the detection of t(14;18)(q32;q21) in patients with follicular lymphoma. Am J Pathol 1998; 153: 63–8.
  • Bohling SD, Wittwer CT, King TC, Elenitoba-Johnson KSJ. Fluorescence melting curve analysis for the detection of the bc1-1/ JH translocation in mantle cell lymphoma. Lab Invest 1999; 79: 337–45.
  • Sarris AH, Jiang Y, Tsimberidou AM, et al. Quantitative real-time polymerase chain reaction for monitoring residual disease in patients with advanced indolent lymphomas treated with rituximab, fludar-abine, mitoxanthrone, and dexamethasone. Semin Oncol 2002; 29: 48–55.
  • de Boer CJ, van Krieken JH, Kluin-Nelemans HC, et al. Cyclin D1 messenger RNA overexpression as a marker for mantle cell lymphoma. Oncogene 1995; 10: 1833–40.
  • Ives Aguilera NS, Bijwaard KE, Duncan B, et al. Differential expression of cyclin D1 in mantle cell lymphoma and other non-Hodgkin's lymphomas. Am J Pathol 1998; 153: 1969–76.
  • Suzuki R, Takemura K, Tsutsumi K, et al. Detection of cyclin D1 overexpression by real-time reverse-transcriptase-mediated quantita-tive polymerase chain reaction for the diagnosis of mantle cell lymphoma. Am J Pathol 2001; 159: 425–9.
  • Medeiros Li, Hai S, Thomazy VA, et al. Real-time PCR assay for quantifying cyclin D1 mRNA in B-cell non-Hodgkin's lymphomas. Mod Pathol 2002; 15: 556–64.
  • Wickham CL, Armitage H, Joyner MV, et al. Quantitation of cyclin D1 over-expression using competitive fluorescent reverse transcription polymerase chain reaction: a tool for the differential diagnosis of mantle cell lymphoma. Med Oncol 2003; 20: 77–86.
  • de Boer CJ, Schuuring E, Dreef E, et al. Cyclin D1 protein analysis in the diagnosis of mantle cell lymphoma. Blood 1995; 86: 2715–23.
  • Swerdlow SH, Yang WI, Zukerberg LR, et al. Expression of cyclin DI protein in centrocytic/mantle cell lymphomas with and without rearrangement of the BCH/cyclin DI gene. Hum Pathol 1995; 26: 999–1004.
  • Ott MM, Helbing A, Ott G, et al. bc1-1 rearrangement and cyclin DI protein expression in mantle cell lymphoma. J Pathol 1996; 179: 238–42.
  • Miranda RN, Briggs RC, Kinney MC, et al. Immunohistochemical detection of cyclin DI using optimized conditions is highly specific for mantle cell lymphoma and hairy cell leukemia. Mod Pathol 2000; 13: 1308–14.
  • Yatabe Y, Suzuki R, Tobinai K, et al. Significance of cyclin DI overexpression for the diagnosis of mantle cell lymphoma: a clinicopathologic comparison of cyclin DI-positive MCL and cyclin Dl-negative MCL-like B-cell lymphoma. Blood 2000; 95: 2253–61.
  • Chan JK, Miller KD, Munson P, Isaacson PG. Immunostaining for cyclin DI and the diagnosis of mantle cell lymphoma: is there a reliable method? Histopathol 1999; 34: 266–70.
  • Korin HW, Schwartz MR, Chirala M, Younes M. Optimized cyclin D1 immunoperoxidase staining in mantle cell lymphoma. Appl Immunohistochem Mol Morphol 2000; 8: 57–60.
  • Rosenwald A, Wright G, Wiestner A, et al. The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma. Cancer Cell 2003; 3: 185–97.
  • Morris SW, Kirstein MN, Valentine MB, et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science 1994; 263: 1281-4 [Erratum: Science 1995; 267: 316–7].
  • Wlodarska I, De Wolf-Peeters C, Falini B, et al. The cryptic inv(2)(p23q35) defines a new molecular genetic subtype of ALK-positive anaplastic large-cell lymphoma. Blood 1998; 92: 2688–95.
  • Falini B, Pulford K, Pucciarini A, et al. Lymphomas expressing ALK fusion protein(s) other than NPM-ALK. Blood 1999; 94: 3509–15.
  • Hernandez L, Pinyol M, Hernandez S, et al. TRK-fused gene (TFG) is a new partner of ALK in anaplastic large cell lymphoma producing two structurally different TFG-ALK translocations. Blood 1999; 94: 3265–8.
  • Lamant L, Dastugue N, Pulford K, et al. A new fusion gene TPM3-ALK in anaplastic large cell lymphoma created by a (1;2)(q25;p23) translocation. Blood 1999; 93: 3088–95.
  • Rosenwald A, Ott G, Pulford K, et al. t(1;2)(q21;p23) and t(2;3)(p23;q21): two novel variant translocations of the t(2;5)(p23;q35) in anaplastic large cell lymphoma. Blood 1999; 94: 362–4.
  • Drexler HG, Gignac SM, von Wasielewski R, et al. Pathobiology of NPM-ALK and variant fusion genes in anaplastic large cell lymphoma and other lymphomas. Leukemia 2000; 14: 1533–59.
  • Colleoni GW, Bridge JA, Garicochea B, et al. ATIC-ALK: a novel variant ALK gene fusion in anaplastic large cell lymphoma resulting from the recurrent cryptic chromosomal inversion, inv(2)(p23q35). Am J Pathol 2000; 156: 781–9.
  • Touriol C, Greenland C, Lamant L, et al. Further demonstration of the diversity of chromosomal changes invovling 2p23 in ALK-positive lymphoma: two cases expressing ALK kinase fused to CLTCL (clathrin chain polypeptide-like). Blood 2000; 95: 3204–7.
  • Falini B. Anaplastic large cell lymphoma: pathological, molecular and clinical features. Br J Haematol 2001; 114: 741–60.
  • Morris SW, Xue L, Ma Z, Kinney MC. ALK+ CD30 + lymphomas: a distinct molecular genetic subtype of non-Hodgkin's lymphoma. Br J Haematol 2001; 113: 275–95.
  • Tort F, Pinyol M, Pulford K, et al. Molecular characterization of a new ALK translocation involving moesin (MSN-ALK) in anaplastic large cell lymphoma. Lab Invest 2001; 81: 419–26.
  • Pulford K, Lamant L, Morris SW, et al. Detection of anaplastic lymphoma kinase (ALK) and nucleolar protein nucleophosmin (NPM)-ALK proteins in normal and neoplastic cells with the monoclonal antibody ALKI. Blood 1997; 89: 1394–404.
  • Gascoyne RD, Aoun P, Chhanabhai M, et al. Prognostic significance of anaplastic lymphoma kinase (ALK) protein expression in adults with anaplastic large cell lymphoma. Blood 1999; 93: 3913–21.
  • Falini B, Pileri S, Zinzani PL, et al. ALK+ lymphoma: clinicopathological findings and outcome. Blood 1999; 93: 2697–706.
  • Cataldo KA, Jalal SM, Law ME, et al. Detection of t(2;5) in anaplastic large cell lymphoma: comparison of immunohistochemical studies, FISH, and RT-PCR in paraffin-embedded tissue. Am J Surg Pathol 1999; 23: 1386–92.
  • Ladanyi M, Cavalchire G, Morris SW, et al. Reverse transcriptase polymerase chain reaction for the Ki-1 anaplastic large cell lymphoma-associated t(2;5) translocation in Hodgkin's disease. Am J Pathol 1994; 145: 1296–300 [Erratum: Am J Pathol 1995; 146: 546].
  • Downing JR, Shurtleff SA, Zielenska M, et al. Molecular detection of the (2;5) translocation of non-Hodgkin's lymphoma by reverse transcriptase-polymerase chain reaction. Blood 1995; 85: 3416–22.
  • Beylot-Barry M, Lamant L, Vergier B, et al. Detection of t(2;5)(p23;q35) translocation by reverse transcriptase polymerase chain reaction and in situ hybridization in CD30-positive primary cutaneous lymphoma and lymphomatoid papulosis. Am J Pathol 1996; 149: 483–92.
  • Lamant L, Meggetto F, al Saati T, et al. High incidence of the t(2;5)(p23;q35) translocation in anaplastic large cell lymphoma and its lack of detection in Hodgkin's disease. Comparison of cytogenetic analysis, reverse transcriptase-polymerase chain reaction, and P-80 immunostaining. Blood 1996; 87: 284–91.
  • Lopategui JR, Sun LH, Chan JK, et al. Low frequency association of the t(2;5)(p23;q35) chromosomal translocation with CD30 + lymphomas from American and Asian patients. A reverse tran-scriptase-polymerase chain reaction study. Am J Pathol 1995; 146: 323–8.
  • Maes B, Vanhentenrijk V, Wlodarska I, et al. The NPM-ALK and the ATIC-ALK fusion genes can be detected in non-neoplastic cells. Am J Pathol 2001; 158: 2185–93.
  • Basecke J, Griesenger F, Trumper L, Brittinger G. Leukemia- and lymphoma-associated genetic aberrations in healthy individuals. Ann Hematol 2002; 81: 64–75.
  • Waggott W, Lo YM, Bastard C, et al. Detection of NPM-ALK DNA rearrangement in CD30 positive anaplastic large cell lymphoma. Br J Haematol 1995; 89: 905–7.
  • Ladanyi M, Cavalchire G. Detection of the NPM-ALK genomic rearrangement of Ki-1 lymphoma and isolation of the involved NPM and ALK introns. Diagn Mol Pathol 1996; 5: 154–8.
  • Sarris AH, Luthra R, Papadimitracopoulou V, et al. Long-range amplification of genomic DNA detects the t(2;5)(p23;q35) in anaplastic large-cell lymphoma, but not in other non-Hodgkin's lymphomas, Hodgkin's disease, or lymphomatoid papulosis. Ann Oncol 1997; 8: 59–63.
  • Sarris AH, Luthra R, Cabanillas F, et al. Genomic DNA amplification and the detection of t(2;5)(p23;q35) in lymphoid neoplasms. Leuk Lymphoma 1998; 29: 507–14.
  • Luthra R, Pugh WC, Waasdrop M, et al. Mapping of genomic t(2;5)(p23;q35) break points in patients with anaplastic large cell lymphoma by sequencing long-range PCR products. Hematopathol Mol Hematol 1998; 11: 173–83.
  • Mathew P, Sanger WG, Weisenburger DD, et al. Detection of the t(2;5)(p23;q35) and NPM-ALK fusion in non-Hodgkin's lymphoma by two-color fluorescence in situ hybridization. Blood 1997; 89: 1678–85.
  • Zwicky CS, Maddocks AB, Andersen N, Gribben JG. Eradication of polymerase chain reaction detectable immunoglobulin gene rearran-gement in non-Hodgkin's lymphoma is associated with decreased relapse after autologous bone marrow transplantation. Blood 1996; 88: 3314–22.
  • Andersen NJ, Donovan JW, Borus JS, et al. Failure of immunologic purging in mantle cell lymphoma assessed by polymerase chain reaction detection of minimal residual disease. Blood 1997; 10: 4212–21.
  • Corradini P, Astolfi M, Cherasco C, et al. Molecular monitoring of minimal residual disease in follicular and mantle cell non-Hodgkin's lymphomas treated with high-dose chemotherapy and peripheral blood progenitor cell autografting. Blood 1997; 89: 724–31.
  • Kurokawa T, Kinoshita T, Nagasaka T, et al. Complementarity determining region-III is a useful molecular marker for the evaluation of minimal residual disease in mantle cell lymphoma. Br J Haematol 1997; 98: 408–12.
  • Hosler GA, Bash RO, Bai X, et al. Development and validation of a quantitative polymerase chain reaction assay to evaluate minimal residual disease for T-cell acute lymphoblastic leukemia and follicular lymphomas. Am J Pathol 1999; 154: 1023–35.
  • Pfitzner T, Engert A, Wittor H, et al. A real-time PCR assay for the quantification of residual malignant cells in B cell chronic lymphatic leukemia. Leukemia 2000; 14: 754–66.
  • Bertoni F, Conconi A, Capella C, et al. Molecular follow-up in gastric mucosa-associated lymphoid tissue lymphomas: early analysis of the LY03 cooperative trial. Blood 2002; 99: 2541–4.
  • Gribben JG. Monitoring disease in lymphoma and CLL patients using molecular techniques. Best Pract Res Clin Haematol 2002; 15: 179–95.
  • Pongers-Willemse MJ, Seriu T, Stoltz F, et al. Primers and protocols for standardized detection of minimal residual disease in acute lymphoblastic leukemia using immunoglobulin and T cell receptor gene rearrangements and TAL 1 deletions as PCR targets: report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia. Leukemia 1999; 13: 1301–3.
  • Van Dongen ii, Macintyre EA, Gabert JA, et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberra-tions in acute leukemia. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia. Leukemia 1999; 13: 1902–28.
  • Bagg A. Minimal residual disease: how low do we go? Mol Diagn 2001; 6: 155–60.
  • Gribben JG, Freedman AS, Woo SD, et al. All advanced stage non-Hodgkin's lymphomas with a polymerase chain reaction amplifiable breakpoint of bc1-2 have residual cells containing the bc1-2 rearrangement at evaluation and after treatment. Blood 1991; 78: 3275–80.
  • Berinstein NL, Reis MD, Ngan BY, et al. Detection of occult lymphoma in the peripheral blood and bone marrow of patients with untreated early-stage and advanced-stage follicular lymphoma. J Clin Oncol 1993; 11: 1344–52.
  • Berinstein NL, Jamal HH, Kuzniar B, et al. Sensitive and reproducible detection of occult disease in patients with follicular lymphoma by PCR amplification of t(14;18) both pre- and post-treatment. Leukemia 1993; 7: 113–9.
  • Lambrechts AC, Hupkes PE, Dorssers LC, van't Veer MB. Clinical significance of t(14; 18)-positive cells in the circulation of patients with stage III or IV follicular non-Hodgkin's lymphoma during first remission. J Clin Oncol 1994; 12: 1541–6.
  • Lopez-Guillermo A, Cabanillas F, McLaughlin P, et al. Molecular response assessed by PCR is the most important factor in predicting failure-free survival in indolent follicular lymphoma: update of the MDACC series. Ann Oncol 2000; 11: 137–40.
  • Bartram C. Molecular genetic techniques for detection of minimal residual disease in acute lymphoblastic leukemia: possibilities and limitations. Recent Results Cancer Res 1993; 131: 149–55.
  • van Dongen JJM, Breit TM, Adriaansen Hi, et al. Immunopheno-typic and immunogenotypic detection of minimal residual disease in acute lymphoblastic leukemia. Recent Results Cancer Res 1993; 131: 157–84.
  • Cross N. Assessing residual leukemia. Bailleres Gun Haematol 1997; 10: 389–403.
  • Corradini P, Ladetto M, Pileri A, Tarella C. Clinical relevance of minimal residual disease monitoring in non-Hodgkin's lymphomas: a critical reappraisal of molecular strategies. Leukemia 1999; 13: 1691–5.
  • Foroni L, Harrison CJ, Hoffbrand AV, Potter MN. Investigation of minimal residual disease in childhood and adult acute lymphoblastic leukemia by molecular analysis. Br J Haematol 1999; 105: 7–24.
  • Dolken G. Detection of minimal residual disease. Adv Cancer Res 2001; 82: 133–85.
  • Cave H, Guidal C, Rohrlich P, et al. Prospective monitoring and quantitation of residual blasts in childhood acute lymphoblastic leukemia by polymerase chain reaction study of delta and gamma T-cell receptor genes. Blood 1994; 83: 1892–902.
  • Cross NC. Quantitative PCR techniques and applications. Br J Haematol 1995; 89: 693–7.
  • van Belzen N, Hupkes PE, Doekharan D, et al. Detection of minimal residual disease using rearranged immunoglobulin heavy chain genes from intermediate- and high-grade malignant B cell non-Hodgkins lymphoma. Leukemia 1997; 11: 1742–52.
  • Szczepanski T, Willemse MJ, Kamps MP, et al. Molecular discrimination between relapsed and secondary acute lymphoblastic leukemia: proposal for an easy strategy. Med Pediatr Oncol 2001; 36: 352–8.
  • Szczepanski T, Willemse MJ, Brinkhof B, et al. Comparative analysis of Ig and TCR gene rearrangements at diagnosis and at relapse of childhood precursor-B-ALL provides improved strategies for selec-tion of stable PCR targets for monitoring of minimal residual disease. Blood 2002; 99: 2315–23.
  • Szczepanski T, Flohr T, van der Velden VHJ, et al. Molecular monitoring of residual disease using antigen receptor genes in childhood acute lymphoblastic leukemia. Best Pract Res Clin Haematol 2002; 15: 37–57.
  • Lossos IS, Czerwinski DK, Wechser MA, Levy R. Optimization of quantitative real-time RT-PCR parameters for the study of lymphoid malignancies. Leukemia 2003; 17: 789–95.
  • Delfau MH, Hance Ai, Lecossier D, et al. Restricted diversity of V79-JP rearrangements in unstimulated human 78 T lymphocytes. Eur J Immunol 1992; 22: 2437–43.
  • Taylor JM, Spagnolo DV, Kay PH. B-cell target DNA quantity is a critical factor in the interpretation of B-cell clonality by PCR. Pathology 1997; 29: 309–12.
  • Elenitoba-Johnson KS, Bohling SD, Mitchell RS, et al. PCR analysis of the immunoglobulin heavy chain gene in polyclonal processes can yield pseudoclonal bands as an artifact of low B cell number. J Mol Diagn 2000; 2: 92–6.
  • Dippel E, Klemke D, Hummel M, et al. T-cell clonality of undetermined significance. Blood 2001; 98: 247–8.
  • Wood GS, Haeffner A, Dummer R, Crooks CF. Molecular biology techniques for the diagnosis of cutaneous T-cell lymphoma. Dermatol Clin 1994; 12: 231–41.
  • Nihal M, Mikkola D, Horvath N, et al. Cutaneous lymphoid hyperplasia: a lymphoproliferative continuum with lymphomatous potential. Hum Pathol 2003; 34: 617–22.
  • Wood GS. Analysis of clonality in cutaneous T cell lymphoma and associated diseases. Ann N Y Acad Sci 2001; 941: 26–30.
  • Weiss LM, Wood GS, Ellisen LW, et al. Clonal T-cell populations in pityriasis lichenoides et varioliformis acuta (Mucha-Habermann disease). Am J Pathol 1987; 126: 417–21.
  • Jackow CM, Papadopoulos E, Nelson B, et al. Follicular mucinosis asoociated with scarring alopecia, oligoclonal T-cell receptor V beta expansion, and Staphylococcus aureus: when does follicular muci-nosis become mycosis fungoides? J Am Acad Dermatol 1997; 37: 828–31.
  • Staib G, Sterry W. Use of polymerase chain reaction in the detection of clones in lymphoproliferative diseases of the skin. Recent Res Cancer Res 1995; 139: 239–47.
  • Brady SP, Magro CM, Diaz-Cano Si, Wolfe Hi. Analysis of clonality of atypical cutaneous lymphoid infiltrates associated with drug therapy by PCR/DGGE. Hum Pathol 1999; 30: 130–6.
  • Magro CM, Crowson NA, Kovatich Ai, Burns F. Drug-induced reversible lymphoid dyscrasia: a clonal lymphomatoid dermatitis of memory and acivated T cells. Hum Pathol 2003; 34: 119–29.
  • Hsi E, Greenson JK, Singleton TP, et al. Detection of immunoglo-bulin heavy chain gene rearrangements by polymerase chain reaction in chronic active gastritis associated with Helicobacter pylori. Hum Pathol 1996; 27: 290–6.
  • Wiindisch T, Neubauer A, Stolte M, et al. B-cell monoclonality is associated with lymphoid follicles in gastritis. Am J Surg Pathol 2003; 27: 882–7.
  • Hsi ED, Siddiqui J, Schnitzer B, et al. Analysis of immunoglobulin heavy chain gene rearrangement in myoepithelial sialadenitis by polymerase chain reaction. Am J Clin Pathol 1996; 106: 498–503.
  • Quintana PG, Kapadia SB, Bahler DW, et al. Salivary gland lymphoid infiltrates associated with lymphoepithelial lesions: a clinicopathologic, immunophenotypic, and genotypic study. Hum Pathol 1997; 28: 850–61.
  • Posnett DN, Sinha R, Kabak S, Russo C. Clonal populations of T cells in normal elderly humans: the T cell equivalent to 'benign monoclonal gammopathy'. J Exp Med 1994; 179: 609–18 [Erratum: J Exp Med 1994; 179: 1077].
  • Schwab R, Szabo P, Manavalan JS, et al. Expanded CD4 + and CD8+ T cell clones in elderly humans. J Immunol 1997; 158: 4493–9.
  • Lyons SF, Liebowitz DN. The role of human viruses in the pathogenesis of lymphoma. Semin Oncol 1998; 25: 461–75.
  • Carbone A. AIDS-related non-Hodgkin's lymphomas: from pathol-ogy and molecular pathogenesis to treatment. Hum Pathol 2002; 33: 392–404.
  • Cesarman E. Epstein-Barr virus (EBV) and lymphomagenesis. Front Biosci 2002; 7: e58–65.
  • Young LS, Murray PG. Epstein-Barr virus and oncogenesis: from latent genes to tumours. Oncogene 2003; 22: 5108–21.
  • Poiesz BJ, Poiesz MJ, Choi D. The human T-cell lymphoma/ leukemia viruses. Cancer Invest 2003; 21: 253–77.
  • Vasef MA, Kamel OW, Chen YY, et al. Detection of Epstein-Barr virus in multiple sites involved by Hodgkin's disease. Am J Pathol 1995; 147: 1408–15.
  • Hirose Y, Masaki Y, Sasaki K, et al. Determination of Epstein-Barr virus association with B-cell lymphomas in Japan: study of 72 cases-in situ hybridization, polymerase chain reaction, immunohis-tochemical studies. Int J Hematol 1998; 67: 165–74.
  • Gaal K, Sun NC, Hernandez AM, Arber DA. Sinonasal NK/T-cell lymphomas in the United States. Am J Surg Pathol 2000; 24: 1511–7.
  • Gulley ML, Glaser SL, Craig FE, et al. Guidelines for interpreting EBER in situ hybridization and LMP1 immunohistochemical tests for detecting Epstein-Barr virus in Hodgkin lymphoma. Am J Clin Pathol 2002; 117: 259–67.
  • Andreef M, Pinkel D. Introduction to fluorescence in situ hybridiza-tion-principles and clinical applications. New York: John Wiley & Sons, Inc, 1999.
  • Kearney L. The impact of the new FISH technologies on the cytogenetics of haematological malignancies. Br J Haematol 1999; 104: 648–58.
  • Kempski HM. The characterization of chromosomal abnormalities using fluorescence in situ hybridization procedures. In: Cotter FE, editor. Methods in molecular medicine, molecular diagnosis of cancer. Totowa, NJ: Humana Press, Inc, 1996; 161–82.
  • Kluin PM, Schuuring E. FISH and related techniques in the diagnosis of lymphoma. Cancer Surv 1997; 30: 3–20.
  • Rack KA, Delabesse E, Radfor-Weiss I, et al. Simultaneous detection of MYC, BVR1, PVT1 translocations in lymphoid malignancies by fluorescence in situ hybridization. Genes Chrom Cancer 1998; 23: 220–6.
  • Paternoster SF, Brockman SR, McClure RF, et al. A new method to extract nuclei from paraffin-embedded tissue to study lymhomas using interphase fluorescence in situ hybridization. Am J Pathol 2002; 160: 1967–72.
  • Martin-Subero JI, Harder L, Gesk S, et al. Interphase FISH assays for the detection of translocations with breakpoints in immunoglo-bulin light chain loci. Int J Cancer 2002; 98: 470–4.
  • Pickering D, Nelson M, Chan W, et al. Paraffin tissue score sectioning: an improved technique for whole nuclear extraction and interphase FISH. J Assoc Genet Technol 2001; 27: 38–9.
  • Sanchez-Izquierdo D, Siebert R, Harder L, et al. Detection of translocations affecting the BCL6 locus in B cell non-Hodgkin's lymphoma by interphase fluorescence in situ hybridization. Leukemia 2001; 15: 1475–84.
  • Speicher MR, Ballard G, Ward DC. Karyotyping human chromo-somes by combinatorial multi-fluor FISH. Nat Genet 1996; 12: 368–75.
  • Schröck E, du Manoir S, Veldman T, et al. Multicolor spectral karyotyping of human chromosomes. Science 1996; 273: 494–7.
  • Knutsen T, Ried T. SKY: a comprehensive diagnostic and research tool; a review of the first 300 published cases. J Assoc Genet Tech 2000; 26: 3–15.
  • Bayani JM, Squire JA. Applications of SKY in cancer cytogenetics. Cancer Invest 2002; 20: 373–86.
  • Hilgenfeld E, Padilla-Nash H, Schröck E, Ried T. Analysis of B-cell neoplasias by spectral karyotyping (SKY). Curr Top Microbiol 1999; 246: 169–74.
  • Nordgren A, Sorensen AG, Tinggaard-Pedersen N, et al. New chromosomal breakpoints in non-Hodgkin's lymphomas revealed by spectral karyotyping and G-banding. Int J Molec Med 2000; 5: 485–92.
  • Dave BJ, Nelson M, Pickering DL, et al. Cytogenetic characteriza-tion of diffuse large cell lymphoma using multi-colour fluorescence in situ hybridization. Cancer Genet Cytogenet 2002; 132: 125–32.
  • Nanjangud G, Rao PH, Hedge A, et al. Spectral karyotyping identifies new rearrangements, translocations, and clinical associa-tions in diffuse large B-cell lymphoma. Blood 2002; 99: 2554–61.
  • Houldsworth J, Chaganti RSK. Comparative genomic hybridization: an overview. Am J Pathol 1994; 145: 1253–60.
  • Lichter P, Joos S, Bentz M, Lampel S. Comparative genomic hybridization: uses and limitations. Semin Hematol 2000; 37: 348–57.
  • Pinkel D, Segraves R, Sudar D, et al. High resolution analysis of DNA copy number variation using comparative genomic hybridiza-tion to microarrays. Nat Genet 1998; 20: 207–11.
  • Martinez-Climent JA, Alizadeh AA, Segraves R, et al. Transforma-tion of follicular lymphoma to diffuse large cell lymphoma is associated with a heterogeneous set of DNA copy number and gene expression alterations. Blood 2003; 101: 3109–17.
  • Wessendorf S, Schwaenen C, Kohlhammer H, et al. Hidden gene amplification in aggressive B-cell non-Hodgkin lymphomas detected by microarray-based comparative genomic hybridization. Oncogene 2003; 22: 1425–9.
  • Wessendorf S, Fritz B, Wrobel G, et al. Automated screening for genomic imbalances using matrix-based comparative genomic hybridization. Lab Invest 2002; 82: 47–60.
  • Franke S, Wlodarska I, Maes B, et al. Lymphocyte predominance Hodgkin disease is characterized by recurrent genomic imbalances. Blood 2001; 97: 1845–53.
  • Re D, Zander T, Diehl V, Wolf J. Genetic instability in Hodgkin's lymphoma. Ann Oncol 2002; 13 Suppl 1: 19–22.
  • loos S, Menz CK, Wrobel G, et al. Classical Hodgkin lymphoma is characterized by recurrent copy number gains of the short arm of chromsome 2. Blood 2002; 99: 1381–7.
  • Franke S, Wlodarska I, Maes B, et al. Comparative genomic hybridization pattern distinguishes T-cell/histiocyte-rich B-cell lymphoma from nodular lymphocyte predominance Hodgkin's lymphoma. Am J Pathol 2003; 161: 1861–7.
  • Vizcarra E, Martinez-Climent JA, Benet JA, et al. Identification of two subgroups of mantle cell leukemia with distinct clinical and biological features. Hematol J 2001; 2: 234–41.
  • Allen JE, Hough RE, Goepel JR, et al. Identification of novel regions of amplification and deletion within mantle cell lymphoma DNA by comparative genomic hybridization. Br J Haematol 2002; 116: 291–8.
  • Berglund M, Enblad G, Flordal E, et al. Chromosomal imbalances in diffuse large B-cell lymphoma detected by comparative genomic hybridization. Mod Pathol 2003; 15: 807–16.
  • Palanisamy N, Abou-Elella AA, Chaganti SR, et al. Similar patterns of genomic alterations characterize primary mediastinal large-B cell lymphoma and diffuse large B-cell lymphoma. Genes Chromosomes Cancer 2002; 33: 114–22.
  • Hough RE, Goepel JR, Alcock HE, et al. Copy number gain at 12q12-14 may be important in the transformation from follicular to diffuse large B cell lymphoma. Br J Cancer 2001; 84: 499–503.
  • Boonstra R, Bosga-Bouwer A, Mastik M, et al. Identification of chromosomal copy number changes associated with transformation of follicular lymphoma to diffuse large B-cell lymphoma. Hum Pathol 2003; 34: 915–23.
  • Zettl A, Ott G, Makulik A, et al. Chromosmal gains at 9q characterize enteropathy-type T-cell lymphoma. Am J Pathol 2002; 161: 1527–9.
  • Siu LL, Wong KF, Chan JK, Kwong YL. Comparative genomic hybridization analysis of natural killer cell lymphoma/leukaemia: recognition of consistent patterns of genetic alterations. Am J Pathol 1999; 155: 1419–25.
  • Mao X, Onadim Z, Price EA, et al. Genomic alterations in blastic natural killer/extranodal natural killer-like T cell lymphoma with cutaneous involvement. J Invest Dermatol 2003; 121: 618–27.
  • Stokke T, DeAngelis P, Smedshammer L, et al. Loss of chromsome 11q21-23.1 and 17p and gain of chromosome 6p are independent prognostic indicators in B-cell non-Hodgkin's lymphoma. Br J Cancer 2001; 85: 1900–13.
  • Garcia JL, Hernandez JM, Gutierrez MC, et al. Abnormalities on I q and 7q are associated with poor outcome in sporadic Burkitt's lymphoma. A cytogenetic and comparative genomic hybridization study. Leukemia 2003; 17: 2016–24.
  • Viardot A, Moller P, Hogel J, et al. Clinicopathologic correlations of genomic gains and losses in follicular lymphoma. J Clin Oncol 2003; 20: 4523–30.
  • Golub TR, Slonim DK, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999; 286: 531–7.
  • Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995; 270: 467–70.
  • Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 1998; 95: 14863–8.
  • Rosenwald A, Wright G, Chan WC, et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med 2002; 346: 1937–47.
  • Alizadeh AA, Eisen M, Davis RE, et al. The lymphochip: a specialized cDNA microarray for the genomic-scale analysis of gene expression in normal and malignant lymphocytes. Cold Spring Harbour Symp Quant Biol 1999: 71–8.
  • Wiestner A, Staudt LM. Towards molecular diagnosis and targeted therapy of lymphoid malignancies. Semin Hematol 2003; 40: 296–307.
  • Staudt LM. Gene expression profiling of lymphoid malignancies. Annu Rev Med 2002; 53: 303–18.
  • Lossos IS, Levy R. Diffuse large B-cell lymphoma: insights gained from gene expression profiling. Int J Hematol 2003; 77: 321–9.
  • Schwaenen C, Wessendorf S, Kestler HA, et al. DNA microarray analysis in malignant lymphomas. Ann Hematol 2003; 82: 323–32.
  • Staudt LM. Molecular diganosis of the hematologic cancers. N Engl J Med 2003; 348: 1777–85 [Erratum: N Engl J Med 2003; 348: 2588].
  • Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000; 403: 503–11.
  • Lossos IS, Alizadeh AA, Eisen MB, et al. Ongoing immunoglobulin somatic mutations in germinal center B cell-like but not in activated B cell-like diffuse large cell lymphomas. Proc Natl Acad Sci U S A 2000; 97: 10209–13.
  • Shipp MA, Ross KN, Tamayo P, et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nature Ned 2002; 8: 68–74.
  • Nishiu M, Yanagawa R, Nakatsuka S, et al. Microarray analysis of gene-expression profiles in diffuse large B-cell lymphoma: identifica-tion of genes related to disease progression. Jpn J Cancer Res 2002; 93: 894–901.
  • Davis RE, Brown KD, Siebenlist U, Staudt LM. Constitutive nuclear factor kappaB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells. J Exp Med 2001; 194: 1861–74.
  • Baldwin AS. Control of oncogenesis and cancer therapy resistance by the transcription factor NF-K13. J Clin Invest 2001; 107: 241–6.
  • Rosenwald A, Alizadeh AA, Widhopf G, et al. Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J Exp Med 2001; 194: 1639–47.
  • Crespo M, Bosch F, Villamor N, et al. ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. N Engl J Med 2003; 348: 1764–75.
  • Wiestner A, Rosenwald A, Barry TS, et al. ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile. Blood 2003; 101: 4944–51.
  • de Vos S, Krug U, Hofmann WK, et al. Cell cycle alterations in the blastoid variant of mantle cell lymphoma (MCL-BV) as detected by gene expression profiling of mantle cell lymphoma (MCL) and MCL-BV. Diagn Mol Pathol 2003; 12: 35–43.
  • Lossos IS, Alizadeh AA, Diehn M, et al. Transformation of follicular lymphoma to diffuse large-cell lymphoma: alternative patterns with increased or decreased expression of c-myc and its regulated genes. Proc Natl Acad Sci U S A 2002; 99: 8886–91.
  • de Vos S, Hofmann WK, Grogan TM, et al. Gene expression profile of serial samples of transformed B-cell lymphomas. Lab Invest 2003; 83: 271–85.
  • Bohen SP, Troyanskaya OG, Alter O, et al. Variation in gene expression patterns in follicular lymphoma and the response to rituximab. Proc Natl Acad Sci U S A 2003; 100: 1926–30.
  • Devilard E, Bertucci F, Trempat P, et al. Gene expression profiling defines molecular types of classical Hodgkin's disease. Oncogene 2002; 21: 3095–102.
  • Kiippers R, Klein U, Schwering I, et al. Identification of Hodgkin and Reed-Sternberg cell-specific genes by gene expression profiling. J Clin Invest 2003; 111: 529–37.
  • Thorns C, Gaiser T, Lange K, et al. cDNA arrays: gene expression profiles of Hodgkin's disease and anaplastic large cell lymphoma cell lines. Pathol Int 2002; 52: 578–85.
  • Wellman A, Thieblemont C, Pittaluga S, et al. Detection of differentially expressed genes in lymphomas using cDNA arrays: identification of clusterin as a new diagnostic marker for anaplastic large-cell lymphomas. Blood 2000; 96: 398–404.
  • Beillard E, Pallisgaard N, van der Velden VH, et al. Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using 'real-time' quantitative reverse-transcrip-tase polymerase chain reaction (RQ-PCR)-a Europe Against Cancer Program. Leukemia 2003; 17: 2474–86.
  • Gabert J, Beillard E, van der Velden VH, et al. Standardization and quality control of 'real-time' quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia-a Europe Against Cancer Program. Leukemia 2003; 17: 2318–57.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.