6
Views
0
CrossRef citations to date
0
Altmetric
Review

Genomic alterations in renal tumours: what have we learned in the era of comparative genomic hybridisation?

Pages 51-57 | Received 08 Sep 2003, Accepted 08 Sep 2003, Published online: 06 Jul 2009

References

  • Kallioniemi A, Kallioniemi 0, Sudar D, et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 1992; 258: 818–21.
  • Knuutila S, Bjorkqvist AM, Autio K, et al. DNA copy number amplifications in human neoplasms: review of comparative genomic hybridization studies. Am J Pathol 1998; 152: 1107–23.
  • Knuutila S, Aalto Y, Autio K, et al. DNA copy number losses in human neoplasms. Am J Pathol 1999; 155: 683–94.
  • Larramendy ML, Tarkkanen M, Blomqvist C, et al. Comparative genomic hybridization of malignant fibrous histiocytoma reveals a novel prognostic marker. Am J Pathol 1997; 151: 1153–61.
  • Weber RG, Pietsch T, von Schweinitz D, Lichter P. Characterization of genomic alterations in hepatoblastomas. A role for gains on chromosomes 8q and 20 as predictors of poor outcome. Am J Pathol 2000; 157: 571–8.
  • Hing S, Lu YJ, Summersgill B, et al. Gain of lq is associated with adverse outcome in favorable histology Wilms' tumors. Am J Pathol 2001; 158: 393–8.
  • Bockmuhl U, Schluns K, Kuchler I, Petersen S, Petersen I. Genetic imbalances with impact on survival in head and neck cancer patients. Am J Pathol 2000; 157: 369–75.
  • Dellas A, Torhorst J, Jiang F, et al. Prognostic value of genomic alterations in invasive cervical squamous cell carcinoma of clinical stage TB detected by comparative genomic hybridization. Cancer Res 1999; 59: 3475–9.
  • Isola J, Kallioniemi 0, Chu L, et al. Genetic aberrations detected by comparative genomic hybridization predict outcome in node-negative breast cancer. Am J Pathol 1995; 147: 905–11.
  • Dellas A, Torhorst J, Schultheiss E, Mihatsch M, Moch H. DNA sequence losses on chromosome lip and 18q are associated with clinical outcome in lymph node negative ductal breast cancer. Clin Cancer Res 2002; 8: 1210–6.
  • Visakorpi T, Kallioniemi AH, Syvanen AC, et al. Genetic changes in primary and recurrent prostate cancer by comparative genomic hybridization. Cancer Res 1995; 55: 342–7.
  • Visakorpi T, Hyytinen E, Koivisto P, et al. In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat Genet 1995; 9: 401–6.
  • Rao PH, Houldsworth J, Palanisamy N, et al. Chromosomal amplification is associated with cisplatin resistance of human male germ cell tumors. Cancer Res 1998; 58: 4260–3.
  • Kallioniemi 0, Kallioniemi A, Sudar D, et al. Comparative genomic hybridization: a rapid new method for detecting and mapping DNA amplification in tumors. Semin Cancer Biol 1993; 4: 41–6.
  • Kallioniemi 0, Kallioniemi A, Piper J, et al. Optimizing comparative genomic hybridization for analysis of DNA sequence copy number changes in solid tumors. Genes Chromosome Cancer 1994; 10: 231–43.
  • Kallioniemi A, Kallioniemi OP, Piper J, et al. Detection and mapping of amplified DNA sequences in breast cancer by comparative genomic hybridization. Proc Natl Acad Sci USA 1994; 91: 2156–60.
  • Isola J, DeVries S, Chu L, Ghazvini S, Waldman F. Analysis of changes in DNA sequence copy number by comparative genomic hybridization in archival paraffin-embedded tumor samples. Am J Pathol 1994; 145: 1301–8.
  • Moch H, Presti JC Jr, Sauter G, et al. Genetic aberrations detected by comparative genomic hybridization are associated with clinical outcome in renal cell carcinoma. Cancer Res 1996; 56: 27–30.
  • Jiang F, Desper R, Papadimitriou CH, et al. Construction of evolutionary tree models for renal cell carcinoma from comparative genomic hybridization data. Cancer Res 2000; 60: 6503–9.
  • Ried T, Peterson J, Holtgreve-Grez H, et al. Mapping of multiple DNA gains and losses in primary small cell lung carcinomas by comparative genomic hybridization. Cancer Res 1994; 54: 1801–6.
  • Speicher M, Schoell B, Du Manoir S, et al. Specific loss of chromosomes 1, 2, 6, 10, 13, 17, and 21 in chromophobe renal cell carcinomas revealed by comparative genomic hybridization. Am J Pathol 1994; 145: 356–64.
  • Bown N, Cotterill S, Lastowska M, et al. Gain of chromosome arm 17q and adverse outcome in patients with neuroblastoma. New Engl J Med 1999; 340: 1954–61.
  • Presti JC Jr, Moch H, Reuter YE, Cordon Cardo C, Waldman FM. Renal cell carcinoma genetic analysis by comparative genomic hybridization and restriction fragment length polymorphism analysis. J Urol 1996; 156: 281–5.
  • Reutzel D, Mende M, Naumann S, et al. Genomic imbalances in 61 renal cancers from the proximal tubulus detected by comparative genomic hybridization. Cytogenet Cell Genet 2001; 93: 221–7.
  • Rigola MA, Casadevall C, Bernues M, et al. Analysis of kidney tumors by comparative genomic hybridization and conventional cytogenetics. Cancer Genet Cytogenet 2002; 137: 49–53.
  • Moch H, Schraml P, Bubendorf L, et al. Intratumoral heterogeneity of von Hippel-Lindau gene deletions in renal cell carcinoma detected by fluorescence in situ hybridization. Cancer Res 1998; 58: 2304–9.
  • Presti J, Reuter V, Cordon-Cardo C, et al. Allelic deletions in renal tumors: Histopathological correlations. Cancer Res 1993; 53: 5780–3.
  • Siebert R, Jacobi C, Matthiesen P, et al. Detection of deletions in the short arm of chromosome 3 in uncultured renal cell carcinomas by interphase cytogenetics. J Urol 1998; 160: 534–9.
  • Alimov A, Kost-Alimova M, Liu J, et al. Combined LOH/CGH analysis proves the existence of interstitial 3p deletions in renal cell carcinoma. Oncogene 2000; 19: 1392–9.
  • Latif F, Tory K, Gnarra J, et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 1993; 260: 1317–20.
  • Gnarra JR, Tory K, Weng Y, et al. Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat Genet 1994; 7: 85–90.
  • Herman JG, Latif F, Weng Y, et al. Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci USA 1994; 91: 9700–4.
  • Schraml P, Struckmann K, Hatz F, et al. VHL mutations and their correlation with tumour cell proliferation, microvessel density, and patient prognosis in clear cell renal cell carcinoma. J Pathol 2002; 196: 186–93.
  • Duan DR, Pause A, Burgess WH, et al. Inhibition of transcription elongation by the VHL tumor suppressor protein. Science 1995; 269: 1402–6.
  • Kibel A, Iliopoulos 0, DeCaprio JA, Kaelin WG Jr. Binding of the von Hippel-Lindau tumor suppressor protein to Elongin B and C. Science 1995; 269: 1411 6.
  • Mukhopadhyay D, Knebelmann B, Cohen HT, Ananth S, Sukhatme VP. The von Hippel-Lindau tumor suppressor gene product interacts with Spl to repress vascular endothelial growth factor promoter activity. Mol Cell Biol 1997; 17: 5629–39.
  • Schraml P, Hergovitz A, Hatz F, et al. Relevance of nuclear and cytoplasmic pVHL protein expression for renal carcinoma progres-sion. Am J Pathol 2003; 163: 1013–20.
  • Morrissey C, Martinez A, Zatyka M, et al. Epigenetic inactivation of the RASSF1A 3p21.3 tumor suppressor gene in both clear cell and papillary renal cell carcinoma. Cancer Res 2001; 61: 7277–81.
  • Lott ST, Lovell M, Naylor SL, Killary AM. Physical and functional mapping of a tumor suppressor locus for renal cell carcinoma within chromosome 3p12. Cancer Res 1998; 58: 3533–7.
  • Phillips JL, Ghadimi BM, Wangsa D, et al. Molecular cytogenetic characterization of early and late renal cell carcinomas in von Hippel-Lindau disease. Genes Chromosomes Cancer 2001; 31: 1–9.
  • Kanayama H, Lui WO, Takahashi M, et al. Association of a novel constitutional translocation t(lq;3q) with familial renal cell carci-noma. J Med Genet 2001; 38: 165–70.
  • Desper R, Jiang F, Kallioniemi OP, et al. Inferring tree models for oncogenesis from comparative genome hybridization data. J Comput Biol 1999; 6: 37–51.
  • Desper R, Jiang F, Kallioniemi OP, et al. Distance-based reconstruction of tree models for oncogenesis. J Comput Biol 2000; 7: 789–803.
  • Amin M, Corless C, Renshaaw A, et al. Papillary (chromophil) renal cell carcinoma: histomorphologic characteristics and evaluation of conventional pathologic prognostic parameters in 62 cases. Am J Surg Pathol 1997; 21: 621–35.
  • Delahunt B, Eble J. Papillary renal cell carcinoma: a clinicopatho-logic and immunohistochemical study of 105 tumors. Mod Pathol 1997; 10: 537–54.
  • Moch H, Gasser T, Amin M B. Prognostic utility of the recently recommended histologic classification and revised TNM staging system of renal cell carcinoma: a Swiss experience with 588 tumors. Cancer 2000; 89: 604–14.
  • Takahashi S, Shirai T, Ogawa K, et al. Renal cell adenomas and carcinomas in hemodialysis patients: relationship between hemodia-lysis period and development of lesions. Acta Pathol Japon 1993; 43: 674–82.
  • Schmidt L, Junker K, Nakaigawa N, et al. Novel mutations of the MET proto-oncogene in papillary renal carcinomas. Oncogene 1999; 18: 2343–50.
  • Schmidt L, Duh FM, Chen F, et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet 1997; 16: 68–73.
  • Kovacs G. Papillary renal cell carcinoma. A morphologic and cytogenetic study of 11 cases. Am J Pathol 1989; 134: 27–34.
  • Renshaw AA, Zhang H, Corless CL, Fletcher JA, Pins MR. Solid variants of papillary (chromophil) renal cell carcinoma: clinico-pathologic and genetic features. Am J Surg Pathol 1997; 21: 1203–9.
  • Kovacs G, Fuzesi L, Emanual A, Kung HF. Cytogenetics of papillary renal cell tumors. Genes Chromosomes Cancer 1991; 3: 249–55.
  • Presti J, Rao H, Chen Q, et al. Histopathological, cytogenetic, and molecular characterization of renal cortical tumors. Cancer Res 1991; 51: 1544–52.
  • Moch H, Sauter G, Gasser T, et al. EGF-r gene copy number gains detected by fluorescence in situ hybridization in renal cell carcinoma. J Pathol 1998; 184: 424–9.
  • Bentz M, Bergerheim US, Li C, et al. Chromosome imbalances in papillary renal cell carcinoma and first cytogenetic data of familial cases analyzed by comparative genomic hybridization. Cytogenet Cell Genet 1996; 75: 17–21.
  • Brooks JD, Bova GS, Marshall FF, Isaacs WB. Tumor suppressor gene allelic loss in human renal cancers. J Urol 1993; 150: 1278–83.
  • el Naggar AK, Batsakis JG, Wang G, Lee MS. PCR-based RFLP screening of the commonly deleted 3p loci in renal cortical neoplasms. Diagn Mol Pathol 1993; 2: 269–76.
  • Hadaczek P, Podolski J, Toloczko A, et al. Losses at 3p common deletion sites in subtypes of kidney tumours: histopathological correlations. Virchows Arch 1996; 429: 37–42.
  • Jiang F, Richter J, Schraml P, et al. Chromosomal imbalances in papillary renal cell carcinoma: genetic differences between histologic subtypes. Am J Pathol 1998; 153: 1467–73.
  • Glukhova L, Goguel AF, Chudoba I, et al. Overrepresentation of 7q31 and 17q in renal cell carcinomas. Genes Chromosomes Cancer 1998; 22: 171–8.
  • Gronwald J, Baur AS, Holtgreve-Grez H, et al. Chromosomal abnormalities in renal cell neoplasms associated with acquired renal cystic disease. A series studied by comparative genomic hybridization and fluorescence in situ hybridization. J Pathol 1999; 187: 308–12.
  • Junker K, Hindermann W, Schubert J, Schlichter A. Differentiation of multifocal renal cell carcinoma by comparative genomic hybridization. Anticancer Res 1999; 19: 1487–92.
  • Zhuang Z, Park WS, Pack S, et al. Trisomy 7-harbouring non-random duplication of the mutant MET allele in hereditary papillary renal carcinomas. Nat Genet 1998; 20: 66–9.
  • Presti JC Jr, Moch H, Gelb AB, Huynh D, Waldman FM. Initiating genetic events in small renal neoplasms detected by comparative genomic hybridization. J Urol 1998; 160: 1557–61.
  • Kovacs G. Molecular differential pathology of renal tumours. Histopathology 1993; 22: 1–8.
  • Schwerdtle RF, Storkel S, Neuhaus, et al. Allelic losses at chromosomes lp, 2p, 6p, 10p, 13q, 17p, and 21q significantly correlate with the chromophobe subtype of renal cell carcinoma. Cancer Res 1996; 56: 2927–30.
  • Presti J, Moch H, Reuter V, Huynh D, Waldman F. Chromosome 1 and 14 loss in renal oncocytomas. Genes Chromosomes Cancer 1996; 17: 199–204.
  • Crotty T, Lawrence K, Moertel C, et al. Cytogenetic analysis of six renal oncocytomas and a chromophobe renal cell carcinoma. Cancer Genet Cytogenet 1992; 61: 61–6.
  • Fuzesi L, Gunawan B, Braun S, et al. Cytogenetic analysis of 11 renal oncocytomas: further evidence of structural rearrangements of 11q13 as a characteristic chromosomal anomaly. Cancer Genet Cytogenet 1998; 107: 1–6.
  • Kovacs G, Szucs S, Eichner W, et al. Renal oncocytoma: a cytogenetic and morphologic study. Cancer 1987; 59: 2071–7.
  • van den Berg E, Dijkhuizen T, Storkel S, et al. Chromosomal changes in renal oncocytomas. Evidence that t(5;11)(q35;q13) may characterize a second subgroup of oncocytomas. Cancer Genet Cytogenet 1995; 79: 164–8 (ISSN: 0165-4608).
  • Polascik TJ, Cairns P, Epstein JI, et al. Distal nephron renal tumors: microsatellite allelotype. Cancer Res 1996; 56: 1892–5.
  • Verdorfer I, Culig Z, Hobisch A, et al. Characterisation of a collecting duct carcinoma by cytogenetic analysis and comparative genomic hybridisation. Int J Oncol 1998; 13: 461–4.
  • Schoenberg M, Cairns P, Brooks JD, et al. Frequent loss of chromosome arms 8p and 13q in collecting duct carcinoma (CDC) of the kidney. Genes Chromosomes Cancer 1995; 12: 76–80.
  • Selli C, Amorosi A, Vona G, et al. Retrospective evaluation of c-erbB-2 oncogene amplification using competitive PCR in collecting duct carcinoma of the kidney. J Urol 1997; 158: 245–7.
  • Rakozy C, Schmahl GE, Bogner S, Storkel S. Low-grade tubular-mucinous renal neoplasms: morphologic, immunohistochemical, and genetic features. Mod Pathol 2002; 15: 1162–71.
  • Gronwald J, Storkel S, Holtgreve-Grez H. Comparison of DNA gains and losses in primary renal clear cell carcinomas and metastatic sites: importance of 1 q and 3p copy number changes in metastatic events. Cancer Res 1997; 57: 481–7.
  • Bissig H, Richter J, Desper R, et al. Evaluation of the clonal relationship between primary and metastatic renal cell carcinoma by comparative genomic hybridization. Am J Pathol 1999; 155: 267–74.
  • Junker K, Moravek P, Podhola M, et al. Genetic alterations in metastatic renal cell carcinoma detected by comparative genomic hybridization: correlation with clinical and histological data. Int J Oncol 2000; 17: 903–8.
  • Junker K, Sanger J, Schmidt A, et al. Genetic characterization of lung metastases in renal cell carcinoma. Oncol Rep 2003; 10: 1035–8.
  • Kuukasjärvi T, Karhu R, Tanner M, et al. Genetic heterogeneity and clonal evolution underlying development of asynchronous metastasis in human breast cancer. Cancer Res 1997; 57: 1597–604.
  • Schraml P, Struckmann K, Bednar R, et al. CDKNA2A mutation analysis, protein expression, and deletion mapping of chromosome 9p in conventional clear-cell renal carcinomas: evidence for a second tumor suppressor gene proximal to CDKN2A. Am J Pathol 2001; 158: 593–601.
  • Schraml P, Muller D, Bednar R, et al. Allelic loss at the D9S171 locus on chromosome 9p13 is associated with progression of papillary renal cell carcinoma. J Pathol 2000; 190: 457–61.
  • Schullerus D, Herbers J, Chudek J, et al. Loss of heterozygosity at chromosomes 8p, 9p, and 14q is associated with stage and grade of non-papillary renal cell carcinomas. J Pathol 1997; 183: 151–5.
  • Thrash-Bingham CA, Greenberg RE, Howard S, et al. Comprehen-sive allelotyping of human renal cell carcinomas using microsatellite DNA probes. Proc Natl Acad Sci USA 1995; 92: 2854–8.
  • Morita R, Saito S, Ishikawa J, et al. Common regions of deletion on chromosome 5q, 6q and 10q in renal cell carcinoma. Cancer Res 1991; 51: 5817–20.
  • Foster K, Crossey PA, Cairns P, et al. Molecular genetic investigation of sporadic renal cell carcinoma: analysis of allele loss on chromosomes 3p, 5q, 11p, 17 and 22. Br J Cancer 1994; 69: 230–4.
  • Yang ZQ, Yoshida MA, Fukuda Y, et al. Molecular cytogenetic analysis of 17 renal cancer cell lines: increased copy number at 5q31-33 in cell lines from nonpapillary carcinomas. Jpn J Cancer Res 2000; 91: 156–63.
  • Pavlovich CP, Padilla-Nash H, Wangsa D, et al. Patterns of aneuploidy in stage IV clear cell renal cell carcinoma revealed by comparative genomic hybridization and spectral karyotyping. Genes Chromosomes Cancer 2003; 37: 252–60.
  • Gunawan B, Huber W, Holtrup M, et al. Prognostic impacts of cytogenetic findings in clear cell renal cell carcinoma: gain of 5q31-qter predicts a distinct clinical phenotype with favorable prognosis. Cancer Res 2001; 61: 7731–8.
  • Kenck C, Bugert P, Wilhelm M, Kovacs G. Duplication of an approximately 1.5 Mb DNA segment at chromosome 5q22 indicates the locus of a new tumour gene in nonpapillary renal cell carcinomas. Oncogene 1997; 14: 1093–8.
  • Bugert P, Von Knobloch R, Kovacs G. Duplication of two distinct regions on chromosome 5q in non-papillary renal-cell carcinomas. Int J Cancer 1998; 76: 337–40.
  • Bugert P, Pesti T, Kovacs G. The tcf17 gene at chromosome 5q is not involved in the development of conventional renal cell carcinoma. Int J Cancer 2000; 86: 806–10.
  • Kovacs G, Akhtar M, Beckwith BJ, et al. The Heidelberg classification of renal cell tumours. J Pathol 1997; 183: 131–3.
  • Jiang F, Moch H, Richter J, et al. Comparative genomic hybridization reveals frequent chromosome 13q and 4q losses in renal cell carcinomas with sarcomatoid transformation. J Pathol 1998; 185: 382–8.
  • Pinkel D, Segraves R, Sudar D, et al. High resolution analysis of DNA copy number variation using comparative genomic hybridiza-tion to microarrays. Nat Genet 1998; 20: 207–11.
  • Hui AB, Lo KW, Yin XL, et al. Detection of multiple gene amplifications in glioblastoma multiforme using array-based comparative genomic hybridization. Lab Invest 2001; 81: 717–23.
  • Daigo Y, Chin SF, Gorringe KL, et al. Degenerate oligonucleotide primed-polymerase chain reaction-based array comparative genomic hybridization for extensive amplicon profiling of breast cancers: a new approach for the molecular analysis of paraffin-embedded cancer tissue. Am J Pathol 2001; 158: 1623–31.
  • Schraml P, Schwerdtfeger G, Burkhalter F, et al. Combined array comparative genomic hybridization and tissue microarray analysis suggests PAK1 at 11q13.5-q14 as critical oncogene target in ovarian carcinoma. Am J Pathol 2003; 163: 985–92.
  • Wilhelm M, Veltman JA, Olshen AB, et al. Array based comparative genomic hybridization for the differential diagnosis of renal cell cancer. Cancer Res 2002; 62: 957–60.
  • Moch H, Schraml P, Bubendorf L, et al. High-throughput tissue microarray analysis to evaluate genes uncovered by cDNA micro-array screening in renal cell carcinoma. Am J Pathol 1999; 154: 981–6.
  • Young AN, Amin MB, Moreno CS, et al. Expression profiling of renal epithelial neoplasms: a method for tumor classification and discovery of diagnostic molecular markers. Am J Pathol 2001; 158: 1639–51.
  • Takahashi M, Rhodes DR, Furge KA. Gene expression profiling of clear cell renal cell carcinoma: gene identification and prognostic classification. Proc Natl Acad Sci USA 2001; 98: 9754–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.