117
Views
6
CrossRef citations to date
0
Altmetric
INVITED REVIEWS

Circulating nucleic acids in plasma/serum

&
Pages 197-207 | Received 30 Nov 2006, Accepted 17 Dec 2006, Published online: 06 Jul 2009

References

  • Mandel P., Metais P. Les acides nucleiques du plasma sanguin chez l'homme. CR Acad Sci Paris 1947; 142: 241–3
  • Leon S. A., Ehrlich G. E., Shapiro B., Labbate V. A. Free DNA in the serum of rheumatoid arthritis patients. J Rheumatol 1977; 4: 139–43
  • Leon S. A., Green A., Yaros M. J., Shapiro B. Radioimmunoassay for nanogram quantities of DNA. J Immunol Methods 1975; 9: 157–64
  • Leon S. A., Shapiro B., Sklaroff D. M., Yaros M. J. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 1977; 37: 646–50
  • Stroun M., Anker P., Maurice P., Lyautey J., Lederrey C., Beljanski M. Neoplastic characteristics of the DNA found in the plasma of cancer patients. Oncology 1989; 46: 318–22
  • Sorenson G. D., Pribish D. M., Valone F. H., Memoli V. A., Bzik D. J., Yao S. L. Soluble normal and mutated DNA sequences from single‐copy genes in human blood. Cancer Epidemiol Biomarkers Prev 1994; 3: 67–71
  • Vasioukhin V., Anker P., Maurice P., Lyautey J., Lederrey C., Stroun M. Point mutations of the N‐ras gene in the blood plasma DNA of patients with myelodysplastic syndrome or acute myelogenous leukaemia. Br J Haematol 1994; 86: 774–9
  • Strickland S., Richards W. G. Invasion of the trophoblasts. Cell 1992; 71: 355–7
  • Lo Y. M. D., Corbetta N., Chamberlain P. F., et al. Presence of fetal DNA in maternal plasma and serum. Lancet 1997; 350: 485–7
  • Lo K. W., Lo Y. M. D., Leung S. F., et al. Analysis of cell‐free Epstein‐Barr virus associated RNA in the plasma of patients with nasopharyngeal carcinoma. Clin Chem 1999; 45: 1292–4
  • Kopreski M. S., Benko F. A., Kwak L. W., Gocke C. D. Detection of tumor messenger RNA in the serum of patients with malignant melanoma. Clin Cancer Res 1999; 5: 1961–5
  • Poon L. L. M., Leung T. N., Lau T. K., Lo Y. M. D. Presence of fetal RNA in maternal plasma. Clin Chem 2000; 46: 1832–4
  • Lo Y. M. D., Tein M. S., Pang C. C., Yeung C. K., Tong K. L., Hjelm N. M. Presence of donor‐specific DNA in plasma of kidney and liver‐transplant recipients. Lancet 1998; 351: 1329–30
  • Baxter‐Lowe L. A., Busch M. P. Tracking microchimeric DNA in plasma to diagnose and manage organ transplant rejection. Clin Chem 2006; 52: 559–61
  • Lo Y. M. D., Rainer T. H., Chan L. Y., Hjelm N. M., Cocks R. A. Plasma DNA as a prognostic marker in trauma patients. Clin Chem 2000; 46: 319–23
  • Rainer T. H., Wong L. K., Lam W., et al. Prognostic use of circulating plasma nucleic acid concentrations in patients with acute stroke. Clin Chem 2003; 49: 562–9
  • Ren F. Y., Piao X. X., Jin A. L. Efficacy of ultrasonography and alpha‐fetoprotein on early detection of hepatocellular carcinoma. World J Gastroenterol 2006; 12: 4656–9
  • Fernandes L. C., Kim S. B., Matos D. Cytokeratins and carcinoembryonic antigen in diagnosis, staging and prognosis of colorectal adenocarcinoma. World J Gastroenterol 2005; 11: 645–8
  • Labrie F., Candas B., Cusan L., et al. Screening decreases prostate cancer mortality: 11‐year follow‐up of the 1988 Quebec prospective randomized controlled trial. Prostate 2004; 59: 311–8
  • Chen X. Q., Stroun M., Magnenat J. L., et al. Microsatellite alterations in plasma DNA of small cell lung cancer patients. Nat Med 1996; 2: 1033–5
  • Nawroz H., Koch W., Anker P., Stroun M., Sidransky D. Microsatellite alterations in serum DNA of head and neck cancer patients. Nat Med 1996; 2: 1035–7
  • Mayall F., Jacobson G., Wilkins R., Chang B. Mutations of p53 gene can be detected in the plasma of patients with large bowel carcinoma. J Clin Pathol 1998; 51: 611–3
  • Gocke C. D., Benko F. A., Kopreski M. S., McGarrity T. J. p53 and APC mutations are detectable in the plasma and serum of patients with colorectal cancer (CRC) or adenomas. Ann N Y Acad Sci 2000; 906: 44–50
  • Vogelstein B., Fearon E. R., Hamilton S. R., et al. Genetic alterations during colorectal‐tumor development. N Engl J Med 1988; 319: 525–32
  • Almoguera C., Shibata D., Forrester K., Martin J., Arnheim N., Perucho M. Most human carcinomas of the exocrine pancreas contain mutant c‐K‐ras genes. Cell 1988; 53: 549–54
  • Slebos R. J., Kibbelaar R. E., Dalesio O., et al. K‐ras oncogene activation as a prognostic marker in adenocarcinoma of the lung. N Engl J Med 1990; 323: 561–5
  • Sorenson G. D. Detection of mutated KRAS2 sequences as tumor markers in plasma/serum of patients with gastrointestinal cancer. Clin Cancer Res 2000; 6: 2129–37
  • Maire F., Micard S., Hammel P., et al. Differential diagnosis between chronic pancreatitis and pancreatic cancer: value of the detection of KRAS2 mutations in circulating DNA. Br J Cancer 2002; 87: 551–4
  • Yamada T., Nakamori S., Ohzato H., et al. Detection of K‐ras gene mutations in plasma DNA of patients with pancreatic adenocarcinoma: correlation with clinicopathological features. Clin Cancer Res 1998; 4: 1527–32
  • Kopreski M. S., Benko F. A., Borys D. J., Khan A., McGarrity T. J., Gocke C. D. Somatic mutation screening: identification of individuals harboring K‐ras mutations with the use of plasma DNA. J Natl Cancer Inst 2000; 92: 918–23
  • Castells A., Puig P., Mora J., et al. K‐ras mutations in DNA extracted from the plasma of patients with pancreatic carcinoma: diagnostic utility and prognostic significance. J Clin Oncol 1999; 17: 578–84
  • Kimura T., Holland W. S., Kawaguchi T., et al. Mutant DNA in plasma of lung cancer patients: potential for monitoring response to therapy. Ann N Y Acad Sci 2004; 1022: 55–60
  • Silva J. M., Dominguez G., Garcia J. M., et al. Presence of tumor DNA in plasma of breast cancer patients: clinicopathological correlations. Cancer Res 1999; 59: 3251–6
  • Sozzi G., Musso K., Ratcliffe C., Goldstraw P., Pierotti M. A., Pastorino U. Detection of microsatellite alterations in plasma DNA of non‐small cell lung cancer patients: a prospect for early diagnosis. Clin Cancer Res 1999; 5: 2689–92
  • Goessl C., Heicappell R., Munker R., et al. Microsatellite analysis of plasma DNA from patients with clear cell renal carcinoma. Cancer Res 1998; 58: 4728–32
  • Fujiwara Y., Chi D. D., Wang H., et al. Plasma DNA microsatellites as tumor‐specific markers and indicators of tumor progression in melanoma patients. Cancer Res 1999; 59: 1567–71
  • Taback B., O'Day S. J., Boasberg P. D., et al. Circulating DNA microsatellites: molecular determinants of response to biochemotherapy in patients with metastatic melanoma. J Natl Cancer Inst 2004; 96: 152–6
  • Taback B., Fujiwara Y., Wang H. J., Foshag L. J., Morton D. L., Hoon D. S. Prognostic significance of circulating microsatellite markers in the plasma of melanoma patients. Cancer Res 2001; 61: 5723–6
  • Silva J. M., Silva J., Sanchez A., et al. Tumor DNA in plasma at diagnosis of breast cancer patients is a valuable predictor of disease‐free survival. Clin Cancer Res 2002; 8: 3761–6
  • Garcia J. M., Garcia V., Silva J., et al. Extracellular tumor DNA in plasma and overall survival in breast cancer patients. Genes Chromosomes Cancer 2006; 45: 692–701
  • Schwarzenbach H., Muller V., Stahmann N., Pantel K. Detection and characterization of circulating microsatellite‐DNA in blood of patients with breast cancer. Ann N Y Acad Sci 2004; 1022: 25–32
  • Mutirangura A., Pornthanakasem W., Theamboonlers A., et al. Epstein‐Barr viral DNA in serum of patients with nasopharyngeal carcinoma. Clin Cancer Res 1998; 4: 665–9
  • Lo Y. M. D., Chan L. Y., Lo K. W., et al. Quantitative analysis of cell‐free Epstein‐Barr virus DNA in plasma of patients with nasopharyngeal carcinoma. Cancer Res 1999; 59: 1188–91
  • Lei K. I., Chan L. Y., Chan W. Y., Johnson P. J., Lo Y. M. D. Quantitative analysis of circulating cell‐free Epstein‐Barr virus (EBV) DNA levels in patients with EBV‐associated lymphoid malignancies. Br J Haematol 2000; 111: 239–46
  • Lo Y. M. D., Chan W. Y., Ng E. K. O., et al. Circulating Epstein‐Barr virus DNA in the serum of patients with gastric carcinoma. Clin Cancer Res 2001; 7: 1856–9
  • Leung S. F., Tam J. S., Chan A. T., et al. Improved accuracy of detection of nasopharyngeal carcinoma by combined application of circulating Epstein‐Barr virus DNA and anti‐Epstein‐Barr viral capsid antigen IgA antibody. Clin Chem 2004; 50: 339–45
  • Lo Y. M. D., Chan A. T., Chan L. Y., et al. Molecular prognostication of nasopharyngeal carcinoma by quantitative analysis of circulating Epstein‐Barr virus DNA. Cancer Res 2000; 60: 6878–81
  • Chan K. C. A., Chan A. T., Leung S. F., et al. Investigation into the origin and tumoral mass correlation of plasma Epstein‐Barr virus DNA in nasopharyngeal carcinoma. Clin Chem 2005; 51: 2192–5
  • Chan A. T., Lo Y. M. D., Zee B., et al. Plasma Epstein‐Barr virus DNA and residual disease after radiotherapy for undifferentiated nasopharyngeal carcinoma. J Natl Cancer Inst 2002; 94: 1614–9
  • Lo Y. M. D., Chan L. Y., Chan A. T., et al. Quantitative and temporal correlation between circulating cell‐free Epstein‐Barr virus DNA and tumor recurrence in nasopharyngeal carcinoma. Cancer Res 1999; 59: 5452–5
  • Leung S. F., Zee B., Ma B. B., et al. Plasma Epstein‐Barr viral deoxyribonucleic acid quantitation complements TNM staging in nasopharyngeal carcinoma prognostication. J Clin Oncol 2006; 24: 5414–8
  • Pornthanakasem W., Shotelersuk K., Termrungruanglert W., Voravud N., Niruthisard S., Mutirangura A. Human papillomavirus DNA in plasma of patients with cervical cancer. BMC Cancer 2001; 1: 2
  • Widschwendter A., Blassnig A., Wiedemair A., Muller‐Holzner E., Muller H. M., Marth C. Human papillomavirus DNA in sera of cervical cancer patients as tumor marker. Cancer Lett 2003; 202: 231–9
  • Capone R. B., Pai S. I., Koch W. M., et al. Detection and quantitation of human papillomavirus (HPV) DNA in the sera of patients with HPV‐associated head and neck squamous cell carcinoma. Clin Cancer Res 2000; 6: 4171–5
  • Yang H., Yang K., Khafagi A., et al. Sensitive detection of human papillomavirus in cervical, head/neck, and schistosomiasis‐associated bladder malignancies. Proc Natl Acad Sci USA 2005; 102: 7683–8
  • Esteller M., Sanchez‐Cespedes M., Rosell R., Sidransky D., Baylin S. B., Herman J. G. Detection of aberrant promoter hypermethylation of tumor suppressor genes in serum DNA from non‐small cell lung cancer patients. Cancer Res 1999; 59: 67–70
  • Wong I. H., Lo Y. M. D., Zhang J., et al. Detection of aberrant p16 methylation in the plasma and serum of liver cancer patients. Cancer Res 1999; 59: 71–3
  • Silva J. M., Dominguez G., Villanueva M. J., et al. Aberrant DNA methylation of the p16INK4a gene in plasma DNA of breast cancer patients. Br J Cancer 1999; 80: 1262–4
  • Leung W. K., To K. F., Man E. P., et al. Quantitative detection of promoter hypermethylation in multiple genes in the serum of patients with colorectal cancer. Am J Gastroenterol 2005; 100: 2274–9
  • Dulaimi E., Hillinck J., Ibanez de Caceres I., Al‐Saleem T., Cairns P. Tumor suppressor gene promoter hypermethylation in serum of breast cancer patients. Clin Cancer Res 2004; 10: 6189–93
  • Goessl C., Muller M., Heicappell R., Krause H., Miller K. DNA‐based detection of prostate cancer in blood, urine, and ejaculates. Ann N Y Acad Sci 2001; 945: 51–8
  • Wong T. S., Kwong D. L., Sham J. S., Wei W. I., Kwong Y. L., Yuen A. P. Quantitative plasma hypermethylated DNA markers of undifferentiated nasopharyngeal carcinoma. Clin Cancer Res 2004; 10: 2401–6
  • Usadel H., Brabender J., Danenberg K. D., et al. Quantitative adenomatous polyposis coli promoter methylation analysis in tumor tissue, serum, and plasma DNA of patients with lung cancer. Cancer Res 2002; 62: 371–5
  • Kawakami K., Brabender J., Lord R. V., et al. Hypermethylated APC DNA in plasma and prognosis of patients with esophageal adenocarcinoma. J Natl Cancer Inst 2000; 92: 1805–11
  • Dominguez G., Carballido J., Silva J., et al. p14ARF promoter hypermethylation in plasma DNA as an indicator of disease recurrence in bladder cancer patients. Clin Cancer Res 2002; 8: 980–5
  • Hoon D. S., Spugnardi M., Kuo C., Huang S. K., Morton D. L., Taback B. Profiling epigenetic inactivation of tumor suppressor genes in tumors and plasma from cutaneous melanoma patients. Oncogene 2004; 23: 4014–22
  • Wong I. H., Ng M. H., Huang D. P., Lee J. C. Aberrant p15 promoter methylation in adult and childhood acute leukemias of nearly all morphologic subtypes: potential prognostic implications. Blood 2000; 95: 1942–9
  • Fujiwara K., Fujimoto N., Tabata M., et al. Identification of epigenetic aberrant promoter methylation in serum DNA is useful for early detection of lung cancer. Clin Cancer Res 2005; 11: 1219–25
  • Liu Y., An Q., Li L., et al. Hypermethylation of p16INK4a in Chinese lung cancer patients: biological and clinical implications. Carcinogenesis 2003; 24: 1897–901
  • Stenhouse E. J., Crossley J. A., Aitken D. A., Brogan K., Cameron A. D., Connor J. M. First‐trimester combined ultrasound and biochemical screening for Down syndrome in routine clinical practice. Prenat Diagn 2004; 24: 774–80
  • Bianchi D. W., Williams J. M., Sullivan L. M., Hanson F. W., Klinger K. W., Shuber A. P. PCR quantitation of fetal cells in maternal blood in normal and aneuploid pregnancies. Am J Hum Genet 1997; 61: 822–9
  • Bianchi D. W., Zickwolf G. K., Weil G. J., Sylvester S., DeMaria M. A. Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc Natl Acad Sci USA 1996; 93: 705–8
  • Lo Y. M. D., Tein M. S., Lau T. K., et al. Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. Am J Hum Genet 1998; 62: 768–75
  • Lo Y. M. D., Zhang J., Leung T. N., Lau T. K., Chang A. M., Hjelm N. M. Rapid clearance of fetal DNA from maternal plasma. Am J Hum Genet 1999; 64: 218–24
  • Honda H., Miharu N., Ohashi Y., Ohama K. Successful diagnosis of fetal gender using conventional PCR analysis of maternal serum. Clin Chem 2001; 47: 41–6
  • Honda H., Miharu N., Ohashi Y., et al. Fetal gender determination in early pregnancy through qualitative and quantitative analysis of fetal DNA in maternal serum. Hum Genet 2002; 110: 75–9
  • Santacroce R., Vecchione G., Tomaiyolo M., et al. Identification of fetal gender in maternal blood is a helpful tool in the prenatal diagnosis of haemophilia. Haemophilia 2006; 12: 417–22
  • Rijnders R. J., van der Schoot C. E., Bossers B., de Vroede M. A., Christiaens G. C. Fetal sex determination from maternal plasma in pregnancies at risk for congenital adrenal hyperplasia. Obstet Gynecol 2001; 98: 374–8
  • Finning K., Martin P., Daniels G. A clinical service in the UK to predict fetal Rh (Rhesus) D blood group using free fetal DNA in maternal plasma. Ann NY Acad Sci 2004; 1022: 119–23
  • Gautier E., Benachi A., Giovangrandi Y., et al. Fetal RhD genotyping by maternal serum analysis: a two‐year experience. Am J Obstet Gynecol 2005; 192: 666–9
  • Bianchi D. W., Avent N. D., Costa J. M., van der Schoot C. E. Noninvasive prenatal diagnosis of fetal Rhesus D: ready for Prime(r) Time. Obstet Gynecol 2005; 106: 841–4
  • Saito H., Sekizawa A., Morimoto T., Suzuki M., Yanaihara T. Prenatal DNA diagnosis of a single‐gene disorder from maternal plasma. Lancet 2000; 356: 1170
  • Amicucci P., Gennarelli M., Novelli G., Dallapiccola B. Prenatal diagnosis of myotonic dystrophy using fetal DNA obtained from maternal plasma. Clin Chem 2000; 46: 301–2
  • Gonzalez‐Gonzalez M. C., Trujillo M. J., Rodriguez de Alba M., et al. Huntington disease‐unaffected fetus diagnosed from maternal plasma using QF‐PCR. Prenat Diagn 2003; 23: 232–4
  • Chiu R. W. K., Lau T. K., Cheung P. T., Gong Z. Q., Leung T. N., Lo Y. M. D. Noninvasive prenatal exclusion of congenital adrenal hyperplasia by maternal plasma analysis: a feasibility study. Clin Chem 2002; 48: 778–80
  • Gonzalez‐Gonzalez M. C., Garcia‐Hoyos M., Trujillo M. J., et al. Prenatal detection of a cystic fibrosis mutation in fetal DNA from maternal plasma. Prenat Diagn 2002; 22: 946–8
  • Chiu R. W. K., Lau T. K., Leung T. N., Chow K. C., Chui D. H., Lo Y. M. D. Prenatal exclusion of beta thalassaemia major by examination of maternal plasma. Lancet 2002; 360: 998–1000
  • Ding C., Chiu R. W. K., Lau T. K., et al. MS analysis of single‐nucleotide differences in circulating nucleic acids: Application to noninvasive prenatal diagnosis. Proc Natl Acad Sci USA 2004; 101: 10762–7
  • Holzgreve W., Ghezzi F., Di Naro E., Ganshirt D., Maymon E., Hahn S. Disturbed feto‐maternal cell traffic in preeclampsia. Obstet Gynecol 1998; 91: 669–72
  • Chua S., Wilkins T., Sargent I., Redman C. Trophoblast deportation in pre‐eclamptic pregnancy. Br J Obstet Gynaecol 1991; 98: 973–9
  • Zhong X. Y., Laivuori H., Livingston J. C., et al. Elevation of both maternal and fetal extracellular circulating deoxyribonucleic acid concentrations in the plasma of pregnant women with preeclampsia. Am J Obstet Gynecol 2001; 184: 414–9
  • Lo Y. M. D., Leung T. N., Tein M. S., et al. Quantitative abnormalities of fetal DNA in maternal serum in preeclampsia. Clin Chem 1999; 45: 184–8
  • Lau T. K., Lo K. W., Chan L. Y., Leung T. Y., Lo Y. M. D. Cell‐free fetal deoxyribonucleic acid in maternal circulation as a marker of fetal‐maternal hemorrhage in patients undergoing external cephalic version near term. Am J Obstet Gynecol 2000; 183: 712–6
  • Leung T. N., Zhang J., Lau T. K., Hjelm N. M., Lo Y. M. D. Maternal plasma fetal DNA as a marker for preterm labour. Lancet 1998; 352: 1904–5
  • Zhong X. Y., Holzgreve W., Li J. C., Aydinli K., Hahn S. High levels of fetal erythroblasts and fetal extracellular DNA in the peripheral blood of a pregnant woman with idiopathic polyhydramnios: case report. Prenat Diagn 2000; 20: 838–41
  • Sugito Y., Sekizawa A., Farina A., et al. Relationship between severity of hyperemesis gravidarum and fetal DNA concentration in maternal plasma. Clin Chem 2003; 49: 1667–9
  • Lau T. W., Leung T. N., Chan L. Y., et al. Fetal DNA clearance from maternal plasma is impaired in preeclampsia. Clin Chem 2002; 48: 2141–6
  • Leung T. N., Zhang J., Lau T. K., Chan L. Y., Lo Y. M. D. Increased maternal plasma fetal DNA concentrations in women who eventually develop preeclampsia. Clin Chem 2001; 47: 137–9
  • Levine R. J., Qian C., Leshane E. S., et al. Two‐stage elevation of cell‐free fetal DNA in maternal sera before onset of preeclampsia. Am J Obstet Gynecol 2004; 190: 707–13
  • Tjoa M. L., Cindrova‐Davies T., Spasic‐Boskovic O., Bianchi D. W., Burton G. J. Trophoblastic oxidative stress and the release of cell‐free feto‐placental DNA. Am J Pathol 2006; 169: 400–4
  • Farina A., Sekizawa A., Sugito Y., et al. Fetal DNA in maternal plasma as a screening variable for preeclampsia. A preliminary nonparametric analysis of detection rate in low‐risk nonsymptomatic patients. Prenat Diagn 2004; 24: 83–6
  • Lo Y. M. D., Lau T. K., Zhang J., et al. Increased fetal DNA concentrations in the plasma of pregnant women carrying fetuses with trisomy 21. Clin Chem 1999; 45: 1747–51
  • Zhong X. Y., Burk M. R., Troeger C., Jackson L. R., Holzgreve W., Hahn S. Fetal DNA in maternal plasma is elevated in pregnancies with aneuploid fetuses. Prenat Diagn 2000; 20: 795–8
  • Wataganara T., LeShane E. S., Farina A., et al. Maternal serum cell‐free fetal DNA levels are increased in cases of trisomy 13 but not trisomy 18. Hum Genet 2003; 112: 204–8
  • Lee T., LeShane E. S., Messerlian G. M., et al. Down syndrome and cell‐free fetal DNA in archived maternal serum. Am J Obstet Gynecol 2002; 187: 1217–21
  • Hromadnikova I., Houbova B., Hridelova D., et al. Quantitative analysis of DNA levels in maternal plasma in normal and Down syndrome pregnancies. BMC Pregnancy Childbirth 2002; 2: 4
  • Poon L. L. M., Leung T. N., Lau T. K., Chow K. C., Lo Y. M. D. Differential DNA methylation between fetus and mother as a strategy for detecting fetal DNA in maternal plasma. Clin Chem 2002; 48: 35–41
  • Chim S. S. C., Tong Y. K., Chiu R. W. K., et al. Detection of the placental epigenetic signature of the maspin gene in maternal plasma. Proc Natl Acad Sci USA 2005; 102: 14753–8
  • Tong Y. K., Ding C., Chiu R. W. K., et al. Noninvasive prenatal detection of fetal trisomy 18 by epigenetic allelic ratio analysis in maternal plasma: Theoretical and empirical considerations. Clin Chem 2006; 52: 2194–202
  • Ruiz R., Kunitake H., Wilkinson A. H., et al. Long‐term analysis of combined liver and kidney transplantation at a single center. Arch Surg 2006; 141: 735–41; discussion 41–2
  • Klassen D. K., Weir M. R., Cangro C. B., Bartlett S. T., Papadimitriou J. C., Drachenberg C. B. Pancreas allograft biopsy: safety of percutaneous biopsy‐results of a large experience. Transplantation 2002; 73: 553–5
  • Lui Y. Y., Chik K. W., Chiu R. W. K., Ho C. Y., Lam C. W., Lo Y. M. D. Predominant hematopoietic origin of cell‐free DNA in plasma and serum after sex‐mismatched bone marrow transplantation. Clin Chem 2002; 48: 421–7
  • Gadi V. K., Nelson J. L., Boespflug N. D., Guthrie K. A., Kuhr C. S. Soluble donor DNA concentrations in recipient serum correlate with pancreas‐kidney rejection. Clin Chem 2006; 52: 379–82
  • Martins P. N., Mashreghi M. F., Reutzel‐Selke A., et al. Quantification of donor‐derived DNA in serum: a new approach of acute rejection diagnosis in a rat kidney transplantation model. Transplant Proc 2005; 37: 87–8
  • Starzl T. E. Chimerism and tolerance in transplantation. Proc Natl Acad Sci USA 2004; 101 (Suppl 2): 14607–14
  • Jahr S., Hentze H., Englisch S., et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 2001; 61: 1659–65
  • Lam N. Y., Rainer T. H., Chiu R. W. K., Joynt G. M., Lo Y. M. D. Plasma mitochondrial DNA concentrations after trauma. Clin Chem 2004; 50: 213–6
  • Lam N. Y., Rainer T. H., Chan L. Y., Joynt G. M., Lo Y. M. D. Time course of early and late changes in plasma DNA in trauma patients. Clin Chem 2003; 49: 1286–91
  • Wijeratne S., Butt A., Burns S., Sherwood K., Boyd O., Swaminathan R. Cell‐free plasma DNA as a prognostic marker in intensive treatment unit patients. Ann NY Acad Sci 2004; 1022: 232–8
  • Rainer T. H., Lam N. Y., Man C. Y., Chiu R. W. K., Woo K. S., Lo Y. M. D. Plasma beta‐globin DNA as a prognostic marker in chest pain patients. Clin Chim Acta 2006; 368: 110–3
  • Rainer T. H., Lo Y. M. D., Chan L. Y., Lam N. Y., Lit L. C., Cocks R. A. Derivation of a prediction rule for posttraumatic organ failure using plasma DNA and other variables. Ann NY Acad Sci 2001; 945: 211–20
  • Chen X. Q., Bonnefoi H., Pelte M. F., et al. Telomerase RNA as a detection marker in the serum of breast cancer patients. Clin Cancer Res 2000; 6: 3823–6
  • Dasi F., Lledo S., Garcia‐Granero E., et al. Real‐time quantification in plasma of human telomerase reverse transcriptase (hTERT) mRNA: a simple blood test to monitor disease in cancer patients. Lab Invest 2001; 81: 767–9
  • Wong S. C., Lo S. F., Cheung M. T., et al. Quantification of plasma beta‐catenin mRNA in colorectal cancer and adenoma patients. Clin Cancer Res 2004; 10: 1613–7
  • Chu D. C., Chuang C. K., Liou Y. F., Tzou R. D., Lee H. C., Sun C. F. The use of real‐time quantitative PCR to detect circulating prostate‐specific membrane antigen mRNA in patients with prostate carcinoma. Ann NY Acad Sci 2004; 1022: 157–62
  • Gal S., Fidler C., Lo Y. M. D., et al. Detection of mammaglobin mRNA in the plasma of breast cancer patients. Ann NY Acad Sci 2001; 945: 192–4
  • Garcia V., Garcia J. M., Pena C., et al. Thymidylate synthase messenger RNA expression in plasma from patients with colon cancer: prognostic potential. Clin Cancer Res 2006; 12: 2095–100
  • Silva J., Silva J. M., Garcia V., Garcia J. M., Dominguez G., Bonilla F. RNA is more sensitive than DNA in identification of breast cancer patients bearing tumor nucleic acids in plasma. Genes Chromosomes Cancer 2002; 35: 375–6
  • Chiu R. W. K., Lui W. B., Cheung M. C., et al. Time profile of appearance and disappearance of circulating placenta‐derived mRNA in maternal plasma. Clin Chem 2006; 52: 313–6
  • Ng E. K. O., Leung T. N., Tsui N. B. Y., et al. The concentration of circulating corticotropin‐releasing hormone mRNA in maternal plasma is increased in preeclampsia. Clin Chem 2003; 49: 727–31
  • Lo Y. M. D., Tsui N. B. Y., Chiu R. W. K., et al. Plasma placental RNA allelic ratio permits noninvasive prenatal detection of fetal chromosomal aneuploidy. Nat Med 2007; Jan 7, (Epub ahead of print)
  • Ng E. K. O., Tsui N. B. Y., Lau T. K., et al. mRNA of placental origin is readily detectable in maternal plasma. Proc Natl Acad Sci USA 2003; 100: 4748–53
  • Ng E. K. O., Tsui N. B. Y., Lam N. Y., et al. Presence of filterable and nonfilterable mRNA in the plasma of cancer patients and healthy individuals. Clin Chem 2002; 48: 1212–7
  • Tsui N. B. Y., Ng E. K. O., Lo Y. M. D. Stability of endogenous and added RNA in blood specimens, serum, and plasma. Clin Chem 2002; 48: 1647–53
  • Hasselmann D. O., Rappl G., Tilgen W., Reinhold U. Extracellular tyrosinase mRNA within apoptotic bodies is protected from degradation in human serum. Clin Chem 2001; 47: 1488–9
  • Gupta A. K., Holzgreve W., Huppertz B., Malek A., Schneider H., Hahn S. Detection of fetal DNA and RNA in placenta‐derived syncytiotrophoblast microparticles generated in vitro. Clin Chem 2004; 50: 2187–90
  • Costa J. M., Benachi A., Olivi M., Dumez Y., Vidaud M., Gautier E. Fetal expressed gene analysis in maternal blood: a new tool for noninvasive study of the fetus. Clin Chem 2003; 49: 981–3
  • Tsui N. B. Y., Chim S. S., Chiu R. W. K., et al. Systematic micro‐array based identification of placental mRNA in maternal plasma: towards non‐invasive prenatal gene expression profiling. J Med Genet 2004; 41: 461–7
  • Lo Y. M. D., Lo E. S., Watson N., et al. Two‐way cell traffic between mother and fetus: biologic and clinical implications. Blood 1996; 88: 4390–5
  • Sekizawa A., Samura O., Zhen D. K., Falco V., Farina A., Bianchi D. W. Apoptosis in fetal nucleated erythrocytes circulating in maternal blood. Prenat Diagn 2000; 20: 886–9
  • Zhong X. Y., Holzgreve W., Hahn S. Cell‐free fetal DNA in the maternal circulation does not stem from the transplacental passage of fetal erythroblasts. Mol Hum Reprod 2002; 8: 864–70
  • Stroun M., Lyautey J., Lederrey C., Olson‐Sand A., Anker P. About the possible origin and mechanism of circulating DNA apoptosis and active DNA release. Clin Chim Acta 2001; 313: 139–42
  • Cristofanilli M., Budd G. T., Ellis M. J., et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 2004; 351: 781–91
  • Chan K. C. A., Zhang J., Hui A. B., et al. Size distributions of maternal and fetal DNA in maternal plasma. Clin Chem 2004; 50: 88–92
  • Chan K. C. A., Zhang J., Chan A. T., et al. Molecular characterization of circulating EBV DNA in the plasma of nasopharyngeal carcinoma and lymphoma patients. Cancer Res 2003; 63: 2028–32
  • Li Y., Zimmermann B., Rusterholz C., Kang A., Holzgreve W., Hahn S. Size separation of circulatory DNA in maternal plasma permits ready detection of fetal DNA polymorphisms. Clin Chem 2004; 50: 1002–11
  • Li Y., Di Naro E., Vitucci A., Zimmermann B., Holzgreve W., Hahn S. Detection of paternally inherited fetal point mutations for beta‐thalassemia using size‐fractionated cell‐free DNA in maternal plasma. JAMA 2005; 293: 843–9
  • Li Y., Wenzel F., Holzgreve W., Hahn S. Genotyping fetal paternally inherited SNPs by MALDI‐TOF MS using cell‐free fetal DNA in maternal plasma: influence of size fractionation. Electrophoresis 2006; 27: 3889–96
  • Zhong X. Y., Burk M. R., Troeger C., Kang A., Holzgreve W., Hahn S. Fluctuation of maternal and fetal free extracellular circulatory DNA in maternal plasma. Obstet Gynecol 2000; 96: 991–6
  • Kopreski M. S., Benko F. A., Kwee C., et al. Detection of mutant K‐ras DNA in plasma or serum of patients with colorectal cancer. Br J Cancer 1997; 76: 1293–9
  • Lee T. H., Montalvo L., Chrebtow V., Busch M. P. Quantitation of genomic DNA in plasma and serum samples: higher concentrations of genomic DNA found in serum than in plasma. Transfusion 2001; 41: 276–82
  • Lam N. Y., Rainer T. H., Chiu R. W. K., Lo Y. M. D. EDTA is a better anticoagulant than heparin or citrate for delayed blood processing for plasma DNA analysis. Clin Chem 2004; 50: 256–7
  • Invernizzi P., Biondi M. L., Battezzati P. M., et al. Presence of fetal DNA in maternal plasma decades after pregnancy. Hum Genet 2002; 110: 587–91
  • Chiu R. W. K., Poon L. L., Lau T. K., Leung T. N., Wong E. M., Lo Y. M. D. Effects of blood‐processing protocols on fetal and total DNA quantification in maternal plasma. Clin Chem 2001; 47: 1607–13
  • Dhallan R., Au W. C., Mattagajasingh S., et al. Methods to increase the percentage of free fetal DNA recovered from the maternal circulation. JAMA 2004; 291: 1114–9
  • Chinnapapagari S. K., Holzgreve W., Lapaire O., Zimmermann B., Hahn S. Treatment of maternal blood samples with formaldehyde does not alter the proportion of circulatory fetal nucleic acids (DNA and mRNA) in maternal plasma. Clin Chem 2005; 51: 652–5
  • Chung G. T., Chiu R. W. K., Chan K. C. A., Lau T. K., Leung T. N., Lo Y. M. D. Lack of dramatic enrichment of fetal DNA in maternal plasma by formaldehyde treatment. Clin Chem 2005; 51: 655–8
  • An Q., Liu Y., Gao Y., et al. Detection of p16 hypermethylation in circulating plasma DNA of non‐small cell lung cancer patients. Cancer Lett 2002; 188: 109–14
  • Bearzatto A., Conte D., Frattini M., et al. p16(INK4A) hypermethylation detected by fluorescent methylation‐specific PCR in plasmas from non‐small cell lung cancer. Clin Cancer Res 2002; 8: 3782–7
  • Ng C. S., Zhang J., Wan S., et al. Tumor p16M is a possible marker of advanced stage in non‐small cell lung cancer. J Surg Oncol 2002; 79: 101–6
  • Goessl C., Krause H., Muller M., et al. Fluorescent methylation‐specific polymerase chain reaction for DNA‐based detection of prostate cancer in bodily fluids. Cancer Res 2000; 60: 5941–5
  • Jeronimo C., Usadel H., Henrique R., et al. Quantitative GSTP1 hypermethylation in bodily fluids of patients with prostate cancer. Urology 2002; 60: 1131–5
  • Wong I. H., Chan J., Wong J., Tam P. K. Ubiquitous aberrant RASSF1A promoter methylation in childhood neoplasia. Clin Cancer Res 2004; 10: 994–1002
  • Wong T. S., Chang H. W., Tang K. C., et al. High frequency of promoter hypermethylation of the death‐associated protein‐kinase gene in nasopharyngeal carcinoma and its detection in the peripheral blood of patients. Clin Cancer Res 2002; 8: 433–7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.