35
Views
0
CrossRef citations to date
0
Altmetric
Review

Pathogenic mechanisms in the initiation and progression of mammary phyllodes tumours

, , , , &
Pages 105-117 | Received 23 Oct 2008, Accepted 24 Oct 2008, Published online: 06 Jul 2009

References

  • Tavassoli F P D. Pathology and Genetics: Tumours of the Breast and Female Genital Tract, No. 4. IARC, LyonFrance 2003
  • Bernstein L, Deapen D, Ross R K. The descriptive epidemiology of malignant cystosarcoma phyllodes tumors of the breast. Cancer 1993; 71: 3020–3024
  • Cheng S-P, Chang Y-C, Liu T-P, Lee J-J, Tzen C-Y, Liu C-L. Phyllodes tumor of the breast: the challenge persists. World J Surg 2006; 30: 1414–1421
  • Parker S J, Harries S A. Phyllodes tumours. Postgrad Med J 2001; 77: 428–435
  • Matrisian L M, Cunha G R, Mohla S. Epithelial–stromal interactions and tumor progression: meeting summary and future directions. Cancer Res 2001; 61: 3844–3846
  • Parmar H, Cunha G R. Epithelial–stromal interactions in the mouse and human mammary gland in vivo. Endocr Relat Cancer 2004; 11: 437–458
  • Fleming J M, Leibowitz B J, Kerr D E, Cohick W S. IGF-I differentially regulates IGF-binding protein expression in primary mammary fibroblasts and epithelial cells. J Endocrinol 2005; 186: 165–178
  • Wilson C L, Sims A H, Howell A, Miller C J, Clarke R B. Effects of oestrogen on gene expression in epithelium and stroma of normal human breast tissue. Endocr Relat Cancer 2006; 13: 617–628
  • Kuijper A, Buerger H, Simon R, et al. Analysis of the progression of fibroepithelial tumours of the breast by PCR-based clonality assay. J Pathol 2002; 197: 575–581
  • Dietrich C U, Pandis N, Rizou H, et al. Cytogenetic findings in phyllodes tumors of the breast: karyotypic complexity differentiates between malignant and benign tumors. Hum Pathol 1997; 28: 1379–1382
  • Wang Z C, Buraimoh A, Iglehart J D, Richardson A L. Genome-wide analysis for loss of heterozygosity in primary and recurrent phyllodes tumor and fibroadenoma of breast using single nucleotide polymorphism arrays. Breast Cancer Res Treat 2006; 97: 301–309
  • Sawyer E J, Hanby A M, Ellis P, et al. Molecular analysis of phyllodes tumors reveals distinct changes in the epithelial and stromal components. Am J Pathol 2000; 156: 1093–1098
  • Sawhney N, Garrahan N, Douglas-Jones A G, Williams E D. Epithelial–stromal interactions in tumors. A morphologic study of fibroepithelial tumors of the breast. Cancer 1992; 70: 2115–2120
  • Brosens J J, Tullet J, Varshochi R, Lam E WF. Steroid receptor action. Best Pract Res Clin Obstet Gynaecol 2004; 18: 265–283
  • Cheung K L. Endocrine therapy for breast cancer: an overview. Breast 2007; 16: 327–343
  • Tse G MK, Lee C S, Kung F YL, et al. Hormonal receptors expression in epithelial cells of mammary phyllodes tumors correlates with pathologic grade of the tumor: a multicenter study of 143 cases. Am J Clin Pathol 2002; 118: 522–526
  • Suo Z, Nesland J M. Phyllodes tumor of the breast: EGFR family expression and relation to clinicopathological features. Ultrastruct Pathol. 2000; 24: 371–381
  • Umekita Y, Yoshida H. Immunohistochemical study of hormone receptor and hormone-regulated protein expression in phyllodes tumour: comparison with fibroadenoma. Virchows Arch 1998; 433: 311–314
  • Sapino A, Bosco M, Cassoni P, et al. Estrogen receptor-beta is expressed in stromal cells of fibroadenoma and phyllodes tumors of the breast. Mod Pathol 2006; 19: 599–606
  • Shoker B S, Jarvis C, Clarke R B, et al. Abnormal regulation of the oestrogen receptor in benign breast lesions. J Clin Pathol 2000; 53: 778–783
  • Lien H C, Lu Y S, Cheng A L, et al. Differential expression of glucocorticoid receptor in human breast tissues and related neoplasms. J Pathol 2006; 209: 317–327
  • Zandi R, Larsen A B, Andersen P, Stockhausen M-T, Poulsen H S. Mechanisms for oncogenic activation of the epidermal growth factor receptor. Cell Signal 2007; 19: 2013–2023
  • Normanno N, De Luca A, Bianco C, et al. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 2006; 366: 2–16
  • Grandis J R, Sok J C. Signaling through the epidermal growth factor receptor during the development of malignancy. Pharmacol Ther 2004; 102: 37–46
  • Arteaga C L. Epidermal growth factor receptor dependence in human tumors: more than just expression?. Oncologist 2002; 7(Suppl 4)31–39
  • Baselga J. Why the epidermal growth factor receptor? The rationale for cancer therapy. Oncologist 2002; 7(Suppl 4)2–8
  • Rocha-Lima C M, Soares H P, Raez L E, Singal R. EGFR targeting of solid tumors. Cancer Control 2007; 14: 295–304
  • Moller P, Mechtersheimer G, Kaufmann M, et al. Expression of epidermal growth factor receptor in benign and malignant primary tumours of the breast. Virchows Arch A Pathol Anat Histopathol 1989; 414: 157–164
  • Tse G M, Lui P C, Vong J S, et al. Increased epidermal growth factor receptor (EGFR) expression in malignant mammary phyllodes tumors. Breast Cancer Res Treat 2008; Apr 29, (Epub ahead of print)
  • Kersting C, Kuijper A, Schmidt H, et al. Amplifications of the epidermal growth factor receptor gene (egfr) are common in phyllodes tumors of the breast and are associated with tumor progression. Lab Invest 2006; 86: 54–61
  • Wang X, Jones T D, Zhang S, et al. Amplifications of EGFR gene and protein expression of EGFR, Her-2/neu, c-kit, and androgen receptor in phyllodes tumor of the prostate. Mod Pathol 2007; 20: 175–182
  • Agelopoulos K, Kersting C, Korsching E, et al. Egfr amplification specific gene expression in phyllodes tumours of the breast. Cell Oncol 2007; 29: 443–451
  • Yarden Y. Biology of HER2 and its importance in breast cancer. Oncology 2001; 61(Suppl 2)1–13
  • Menard S, Fortis S, Castiglioni F, Agresti R, Balsari A. HER2 as a prognostic factor in breast cancer. Oncology 2001; 61(Suppl 2)67–72
  • Tan-Chiu E, Piccart M. Moving forward: Herceptin in the adjuvant setting. Oncology 2002; 63(Suppl 1)57–63
  • Yonemori K, Hasegawa T, Shimizu C, et al. Correlation of p53 and MIB-1 expression with both the systemic recurrence and survival in cases of phyllodes tumors of the breast. Pathol Res Pract 2006; 202: 705–712
  • Shpitz B, Bomstein Y, Sternberg A, et al. Immunoreactivity of p53, Ki-67, and c-erbB-2 in phyllodes tumors of the breast in correlation with clinical and morphologic features. J Surg Oncol 2002; 79: 86–92
  • Karim R, Tse G, Putti T, Scolyer R, Lee S. The significance of the Wnt pathway in the pathology of human cancers. Pathology 2004; 36: 120–128
  • Akiyama T. Wnt/beta-catenin signaling. Cytokine Growth Factor Rev 2000; 11: 273–282
  • Polakis P. Wnt signaling and cancer. Genes Dev 2000; 14: 1837–1851
  • Seidensticker M J, Behrens J. Biochemical interactions in the wnt pathway. Biochim Biophys Acta 2000; 1495: 168–182
  • Yamaguchi T P. Heads or tails: Wnts and anterior-posterior patterning. Curr Biol 2001; 11: R713–R724
  • Sawyer E J, Hanby A M, Rowan A J, et al. The Wnt pathway, epithelial–stromal interactions, and malignant progression in phyllodes tumours. J Pathol 2002; 196: 437–444
  • Sawyer E J, Hanby A M, Poulsom R, et al. Beta-catenin abnormalities and associated insulin-like growth factor overexpression are important in phyllodes tumours and fibroadenomas of the breast. J Pathol 2003; 200: 627–632
  • Sawyer E J, Poulsom R, Hunt F T, et al. Malignant phyllodes tumours show stromal overexpression of c-myc and c-kit. J Pathol 2003; 200: 59–64
  • Li W, Sanki A, Karim R Z, et al. The role of cell cycle regulatory proteins in the pathogenesis of melanoma. Pathology. 2006; 38: 287–301
  • Nurse P, Masui Y, Hartwell L. Understanding the cell cycle. Nat Med 1998; 4: 1103–1106
  • Michalides R. Cell cycle regulators: role in etiology, prognosis and treatment in cancer. Ann Oncol 2002; 13(Suppl 4)39
  • Hartwell L H, Kastan M B. Cell cycle control and cancer. Science 1994; 266: 1821–1828
  • Sparrow L E, Eldon M J, English D R, Heenan P J. p16 and p21WAF1 protein expression in melanocytic tumors by immunohistochemistry. Am J Dermatopathol 1998; 20: 255–261
  • Hussussian C J, Struewing J P, Goldstein A M, et al. Germline p16 mutations in familial melanoma. Nat Genet 1994; 8: 15–21
  • Ohnishi H, Kawamura M, Ida K, et al. Homozygous deletions of p16/MTS1 gene are frequent but mutations are infrequent in childhood T-cell acute lymphoblastic leukemia. Blood 1995; 86: 1269–1275
  • Giani C, Finocchiaro G. Mutation rate of the CDKN2 gene in malignant gliomas. Cancer Res 1994; 54: 6338–6339
  • Shapiro G I, Edwards C D, Kobzik L, et al. Reciprocal Rb inactivation and p16INK4 expression in primary lung cancers and cell lines. Cancer Res 1995; 55: 505–509
  • Igaki H, Sasaki H, Tachimori Y, et al. Mutation frequency of the p16/CDKN2 gene in primary cancers in the upper digestive tract. Cancer Res 1995; 55: 3421–3423
  • Yoshida S, Todoroki T, Ichikawa Y, et al. Mutations of p16Ink4/CDKN2 and p15Ink4B/MTS2 genes in biliary tract cancers. Cancer Res 1995; 55: 2756–2760
  • Merlo A, Herman J G, Mao L, et al. 5’ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. [See comment]. Nat Med 1995; 1: 686–692
  • Jones A M, Mitter R, Springall R, et al. A comprehensive genetic profile of phyllodes tumours of the breast detects important mutations, intra-tumoral genetic heterogeneity and new genetic changes on recurrence. J Pathol 2008; 214: 533–544
  • Kuijper A, de Vos R AI, Lagendijk J H, van der Wall E, van Diest P J. Progressive deregulation of the cell cycle with higher tumor grade in the stroma of breast phyllodes tumors. Am J Clin Pathol 2005; 123: 690–698
  • Esposito N N, Mohan D, Brufsky A, Lin Y, Kapali M, Dabbs D J. Phyllodes tumor: a clinicopathologic and immunohistochemical study of 30 cases. Arch Pathol Lab Med 2006; 130: 1516–1521
  • Singh M, Parnes M B, Spoelstra N, Bleile M J, Robinson W A. p16 expression in sentinel nodes with metastatic breast carcinoma: evaluation of its role in developing triaging strategies for axillary node dissection and a marker of poor prognosis. Hum Pathol 2004; 35: 1524–1530
  • Lee C T, Capodieci P, Osman I, et al. Overexpression of the cyclin-dependent kinase inhibitor p16 is associated with tumor recurrence in human prostate cancer. Clin Cancer Res 1999; 5: 977–983
  • Pei X H, Xiong Y. Biochemical and cellular mechanisms of mammalian CDK inhibitors: a few unresolved issues. Oncogene 2005; 24: 2787–2795
  • Lae M, Vincent-Salomon A, Savignoni A, et al. Phyllodes tumors of the breast segregate in two groups according to genetic criteria. Mod Pathol 2007; 20: 435–444
  • Korabiowska M, Ruschenburg I, Betke H, et al. Downregulation of the retinoblastoma gene expression in the progression of malignant melanoma. Pathobiology 2001; 69: 274–280
  • Brantley M A, Jr, Harbour J W. Deregulation of the Rb and p53 pathways in uveal melanoma. Am J Pathol 2000; 157: 1795–1801
  • Schulze A, Zerfass K, Spitkovsky D, et al. Cell cycle regulation of the cyclin A gene promoter is mediated by a variant E2F site. Proc Natl Acad Sci USA 1995; 92: 11264–11268
  • Zhang H, Xiong Y, Beach D. Proliferating cell nuclear antigen and p21 are components of multiple cell cycle kinase complexes. Mol Biol Cell 1993; 4: 897–906
  • Dobashi Y, Shoji M, Jiang S X, Kobayashi M, Kawakubo Y, Kameya T. Active cyclin A–CDK2 complex, a possible critical factor for cell proliferation in human primary lung carcinomas. Am J Pathol 1998; 153: 963–972
  • Bukholm I R, Bukholm G, Nesland J M. Over-expression of cyclin A is highly associated with early relapse and reduced survival in patients with primary breast carcinomas. Int J Cancer 2001; 93: 283–287
  • Lammie G A, Fantl V, Smith R, et al. D11S287, a putative oncogene on chromosome 11q13, is amplified and expressed in squamous cell and mammary carcinomas and linked to BCL-1. Oncogene 1991; 6: 439–444
  • Barbieri F, Cagnoli M, Ragni N, et al. Increased cyclin D1 expression is associated with features of malignancy and disease recurrence in ovarian tumors. Clin Cancer Res 1999; 5: 1837–1842
  • Kim S H, Lewis J J, Brennan M F, Woodruff J M, Dudas M, Cordon-Cardo C. Overexpression of cyclin D1 is associated with poor prognosis in extremity soft-tissue sarcomas. Clin Cancer Res 1998; 4: 2377–2382
  • Naitoh H, Shibata J, Kawaguchi A, Kodama M, Hattori T. Overexpression and localization of cyclin D1 mRNA and antigen in esophageal cancer. Am J Pathol 1995; 146: 1161–1169
  • Kornmann M, Ishiwata T, Itakura J, Tangvoranuntakul P, Beger H G, Korc M. Increased cyclin D1 in human pancreatic cancer is associated with decreased postoperative survival. Oncology 1998; 55: 363–369
  • Li J Y, Gaillard F, Moreau A, et al. Detection of translocation t(11; 14)(q13; q32) in mantle cell lymphoma by fluorescence in situ hybridization. Am J Pathol 1999; 154: 1449–1452
  • de Boer C J, Schuuring E, Dreef E, et al. Cyclin D1 protein analysis in the diagnosis of mantle cell lymphoma. Blood 1995; 86: 2715–2723
  • Avet-Loiseau H, Li J Y, Facon T, et al. High incidence of translocations t(11; 14)(q13; q32) and t(4; 14)(p16; q32) in patients with plasma cell malignancies. Cancer Res 1998; 58: 5640–5645
  • Bhatt K V, Hu R, Spofford L S, Aplin A E. Mutant B-RAF signaling and cyclin D1 regulate Cks1/S-phase kinase-associated protein 2-mediated degradation of p27Kip1 in human melanoma cells. Oncogene 2007; 26: 1056–1066
  • Sauter E R, Yeo U C, von Stemm A, et al. Cyclin D1 is a candidate oncogene in cutaneous melanoma. Cancer Res 2002; 62: 3200–3206
  • Bhatt K V, Spofford L S, Aram G, McMullen M, Pumiglia K, Aplin A E. Adhesion control of cyclin D1 and p27Kip1 levels is deregulated in melanoma cells through BRAF-MEK-ERK signaling. Oncogene 2005; 24: 3459–3471
  • Kleer C G, Giordano T J, Braun T, Oberman H A. Pathologic, immunohistochemical, and molecular features of benign and malignant phyllodes tumors of the breast. Mod Pathol 2001; 14: 185–190
  • Tan P H, Jayabaskar T, Yip G, et al. p53 and c-kit (CD117) protein expression as prognostic indicators in breast phyllodes tumors: a tissue microarray study. Mod Pathol 2005; 18: 1527–1534
  • Millar E K, Beretov J, Marr P, et al. Malignant phyllodes tumours of the breast display increased stromal p53 protein expression. Histopathology 1999; 34: 491–496
  • Tse G MK, Putti T C, Kung F YL, et al. Increased p53 protein expression in malignant mammary phyllodes tumors. [Erratum appears in Mod Pathol 2002; 15: 1010.]. Mod Pathol 2002; 15: 734–740
  • Tse G MK, Lui P CW, Scolyer R A, et al. Tumour angiogenesis and p53 protein expression in mammary phyllodes tumors. Mod Pathol 2003; 16: 1007–1013
  • Dacic S, Kounelis S, Kouri E, Jones M W. Immunohistochemical profile of cystosarcoma phyllodes of the breast: a study of 23 cases. Breast J 2002; 8: 376–381
  • Erhan Y, Zekioglu O, Ersoy O, et al. p53 and Ki-67 expression as prognostic factors in cystosarcoma phyllodes. Breast J 2002; 8: 38–44
  • Tomita T, Ren Y, Davis M, Tawfik O. Phyllodes tumor of borderline malignancy: a 7-year follow-up. Breast J 2003; 9: 333–334
  • Gatalica Z, Finkelstein S, Lucio E, et al. p53 protein expression and gene mutation in phyllodes tumors of the breast. Pathol Res Pract 2001; 197: 183–187
  • Niezabitowski A, Lackowska B, Rys J, et al. Prognostic evaluation of proliferative activity and DNA content in the phyllodes tumor of the breast: immunohistochemical and flow cytometric study of 118 cases. Breast Cancer Res Treat 2001; 65: 77–85
  • Koo C Y, Bay B H, Lui P CW, Tse G MK, Tan P H, Yip G WC. Immunohistochemical expression of heparan sulfate correlates with stromal cell proliferation in breast phyllodes tumors. Mod Pathol 2006; 19: 1344–1350
  • Tse G MK, Lui P CW, Lee C S, et al. Stromal expression of vascular endothelial growth factor correlates with tumor grade and microvessel density in mammary phyllodes tumors: a multicenter study of 185 cases. Hum Pathol 2004; 35: 1053–1057
  • Kuijper A, van der Groep P, van der Wall E, van Diest P J. Expression of hypoxia-inducible factor 1 alpha and its downstream targets in fibroepithelial tumors of the breast. Breast Cancer Res 2005; 7: R808–R818
  • Feakins R M, Wells C A, Young K A, Sheaff M T. Platelet-derived growth factor expression in phyllodes tumors and fibroadenomas of the breast. Hum Pathol 2000; 31: 1214–1222
  • Tse G M, Chaiwun B, Lau K-M, et al. Endothelin-1 expression correlates with atypical histological features in mammary phyllodes tumours. J Clin Pathol 2007; 60: 1051–1056
  • Tse G MK, Wong F C, Tsang A KH, et al. Stromal nitric oxide synthase (NOS) expression correlates with the grade of mammary phyllodes tumour. J Clin Pathol 2005; 58: 600–604
  • Forrester K, Ambs S, Lupold S E, et al. Nitric oxide-induced p53 accumulation and regulation of inducible nitric oxide synthase expression by wild-type p53. Proc Natl Acad Sci USA 1996; 93: 2442–2447
  • Gallo O, Schiavone N, Papucci L, et al. Down-regulation of nitric oxide synthase-2 and cyclooxygenase-2 pathways by p53 in squamous cell carcinoma. Am J Pathol 2003; 163: 723–732
  • Pukkila M J, Kellokoski J K, Virtaniemi J A, et al. Inducible nitric oxide synthase expression in pharyngeal squamous cell carcinoma: relation to p53 expression, clinicopathological data, and survival. Laryngoscope 2002; 112: 1084–1088
  • Tse G M, Ma T K, Chan K F, et al. Increased microvessel density in malignant and borderline mammary phyllodes tumours. Histopathology 2001; 38: 567–570
  • Tse G MK, Putti T C, Lui P CW, et al. Increased c-kit (CD117) expression in malignant mammary phyllodes tumors. Mod Pathol 2004; 17: 827–831
  • Carvalho S, e Silva A O, Milanezi F, et al. c-KIT and PDGFRA in breast phyllodes tumours: overexpression without mutations?. J Clin Pathol 2004; 57: 1075–1079
  • Chen C M, Chen C J, Chang C L, Shyu J S, Hsieh H F, Harn H J. CD34, CD117, and actin expression in phyllodes tumor of the breast. J Surg Res 2000; 94: 84–91
  • Tse G MK, Tsang A KH, Putti T C, et al. Stromal CD10 expression in mammary fibroadenomas and phyllodes tumours. J Clin Pathol 2005; 58: 185–189
  • Tsai W-C, Jin J-S, Yu J-C, Sheu L-F. CD10, actin, and vimentin expression in breast phyllodes tumors correlates with tumor grades of the WHO grading system. Int J Surg Pathol 2006; 14: 127–131
  • Makretsov N A, Hayes M, Carter B A, Dabiri S, Gilks C B, Huntsman D G. Stromal CD10 expression in invasive breast carcinoma correlates with poor prognoaia, estrogen receptor negativity and high grade. Mod Pathol 2007; 20: 84–89
  • Zamecnik M, Kinkor Z, Chlumska A. CD10+ stromal cells in fibroadenomas and phyllodes tumors of the breast. Virchows Arch 2006; 448: 871–872
  • Hughes T A, Brady H JM. Cross-talk between pRb/E2F and Wnt/beta-catenin pathways: E2F1 induces axin2 leading to repression of Wnt signalling and to increased cell death. Exp Cell Res 2005; 303: 32–46
  • Ruiz S, Segrelles C, Santos M, Lara M F, Paramio J M. Functional link between retinoblastoma family of proteins and the Wnt signaling pathway in mouse epidermis. Dev Dyn 2004; 230: 410–418
  • Tan X, Apte U, Micsenyi A, et al. Epidermal growth factor receptor: a novel target of the Wnt/beta-catenin pathway in liver. Gastroenterology 2005; 129: 285–302
  • Civenni G, Holbro T, Hynes N E. Wnt1 and Wnt5a induce cyclin D1 expression through ErbB1 transactivation in HC11 mammary epithelial cells. [Erratum appears in EMBO Rep. 2003 Mar; 4: 326.]. EMBO Rep 2003; 4: 166–171
  • Kim S-E, Choi K-Y. EGF receptor is involved in WNT3a-mediated proliferation and motility of NIH3T3 cells via ERK pathway activation. Cell Signal 2007; 19: 1554–1564
  • Faivre E J, Lange C A. Progesterone receptors upregulate Wnt-1 to induce epidermal growth factor receptor transactivation and c-Src-dependent sustained activation of Erk1/2 mitogen-activated protein kinase in breast cancer cells. Mol Cell Biol 2007; 27: 466–480
  • Mulholland D J, Dedhar S, Coetzee G A, Nelson C C. Interaction of nuclear receptors with the Wnt/beta-catenin/Tcf signaling axis: Wnt you like to know?. Endocr Rev 2005; 26: 898–915
  • Yang F, Li X, Sharma M, et al. Linking beta-catenin to androgen-signaling pathway. J Biol Chem 2002; 277: 11336–11344
  • Takayama S, Rogatsky I, Schwarcz L E, Darimont B D. The glucocorticoid receptor represses cyclin D1 by targeting the Tcf-beta-catenin complex. J Biol Chem 2006; 281: 17856–17863
  • Kouzmenko A P, Takeyama K-I, Ito S, et al. Wnt/beta-catenin and estrogen signaling converge in vivo. J Biol Chem 2004; 279: 40255–40258
  • Das S K, Tan J, Raja S, Halder J, Paria B C, Dey S K. Estrogen targets genes involved in protein processing, calcium homeostasis, and Wnt signaling in the mouse uterus independent of estrogen receptor-alpha and -beta. J Biol Chem 2000; 275: 28834–28842
  • Robinson G W, Hennighausen L, Johnson P F. Side-branching in the mammary gland: the progesterone-Wnt connection. Genes Dev 2000; 14: 889–894
  • Tulac S, Overgaard M T, Hamilton A E, Jumbe N L, Suchanek E, Giudice L C. Dickkopf-1, an inhibitor of Wnt signaling, is regulated by progesterone in human endometrial stromal cells. J Clin Endocrinol Metab 2006; 91: 1453–1461
  • Rider V, Isuzugawa K, Twarog M, et al. Progesterone initiates Wnt-beta-catenin signaling but estradiol is required for nuclear activation and synchronous proliferation of rat uterine stromal cells. J Endocrinol 2006; 191: 537–548
  • Forget M A, Turcotte S, Beauseigle D, et al. The Wnt pathway regulator DKK1 is preferentially expressed in hormone-resistant breast tumours and in some common cancer types. Br J Cancer 2007; 96: 646–653
  • Rao B R, Meyer J S, Fry C G. Most cystosarcoma phyllodes and fibroadenomas have progesterone receptor but lack estrogen receptor: stromal localization of progesterone receptor. Cancer 1981; 47: 2016–2021

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.