10
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The Regulation of beta Globin Gene Expression and beta Thalassemia

Pages 315-324 | Published online: 06 Jul 2009

  • WeatheraU DJ. Clegg JB. The thalassaemia syndromes. Oxford: Blackwell Scientific. 1981.
  • Thein SL. ß-thalassaemia. Bailliére's clinical haematology. International practice and research: the haemoglobinopathies. London: Balliere Tindall. 1993;6:1: 171-6.
  • Collins FS, Weissman SM. The molecular genetics of human hemoglobin. Prog Nucl Acid Res MoIEM 1984; 31: 315-462.
  • Liebhaber SA1 Cash FE, Ballas SK. Human a-globin gene expression. The dominant role of the a2-locus in mRNA and protein synthesis. J Biol Chem 1986; 261: 15327.
  • Grosveld F, van Assendelft GB, Breaves DR et al. Positionindependent, high-level expression of the human ß-globin gene in transgenic mice. Cell 1987; 51:975-85.
  • Tuan D, Solomon W, Li Q, London IM. The "ß-like-globin" gene domain in human erythroid cells. Proc NatlAcad Sd USA 1985; 82: 6384-8.
  • Trudel M, Constantin! F. A 3' enhancer contributes to the stagespecific expression of the human ß-globin gene. Genes Dev 1987; 1 : 954-61.
  • Behringer RB, Hammer RE, Brinster RL, et al. Two 3' sequences direct adult erythroid-specific expression of human ß-globin genes in transgenic mice. Proc NatlAcad Sd USA 1987; 84: 7056-60.
  • Thein SL. Balliere's clinical haematology-sickle cell disease and thalassaemia. London: Balliere Tindall, 1998. Chapter 3, Beta thalassemia.
  • Baysal E, Carver MFH. The â- and ä-thalassemia repository. Hemoglobin 1995; 19: 213-236.
  • Huisman THJ, Carver MFH, Baysal E. A syllabus of thalassemia mutations. Augusta: The Sickle Cell Anemia Foundation, 1997.
  • Kazazian HHJ. The thalassemia syndromes: Molecular basis and prenatal diagnosis in 1990. Semin Hematol 1990; 27: 209-28.
  • Felsenfeld G, McGhee JD. Structure of the 30 nm chromatin fibre. Cell 1986:44:375-7.
  • Kioussis D, Vanin E, deLange T et al. ß-Globin gene inactivation by DNA translocation.Nature 1983; 306: 662-6.
  • Forrester WC, Epner E, Driscoll MC, et al. A deletion of the human ß-globin locus activation region causes a major alteration in chromatin structure and replication across the entire ß-globin locus. Genes Dev 1990:4:1637-49.
  • Aladjem MI, Groudine M, Brody LL, et at. Participation of the human ß-globin locus control region in initiation of DNA replication. Science 1995:270:815-9.
  • Van der Ploeg LHT, Konings A, Oort M, etal. ?-â thalassaemia studies showing that deletion of the ?- and ä-genes influences ß-globin gene expression in man. Nature 1980:283:637-42.
  • Ellis J, Tan-Un KC, Harper A, et al. A dominant chromatin-opening activity in 5' hypersensitive site 3 of the human ß-globin locus control region. EMBO J 1996; 15: 562-8.
  • Tuan DYH, Solomon WB, London IM, et al. An erythroid-specific developmental-stage-independent enhancer far upstream of the human "ß-like globin" genes. Proc NatlAcad Sd USA 1989; 86: 2554-8.
  • Orkin SH. Regulation of globin gene expression in erythroid cells. Ear JBiochem 1995:231: 271-81.
  • McPherson CE, Shim EY, Friedman DC, et al. An active tissuespecific enhancer and bound transcription factors existing in a precisely positioned nucleosomal array. Cell 1993; 75: 387-98.
  • Gillesman N, Tewari R, Lindeboom F, et al. Altered DNA-binding specificity mutants of EKLF and Sp 1 show that EKLF is an activator of the beta-globin binding locus control region in vivo. Genes Dev 1998; 12:2863-73.
  • Grosveld F, Dillon N, Higgs D. Balliere's clinical haematology-the haemoglobinopathies. London: Balliere Tindall, 1993. Chapter 2, The regulation of human globin gene expression.
  • Roeder RG. The complexities of eukaryotic transcription initiation: regulation of preinitiation complex assembly. Trends Biol Sd 1991; 16:402-8.
  • Thompson CC, McKnight SL. Anatomy of an enhancer. Trends Genet 1992:8:232-6.
  • Antoniou M, deBoer E, Habets G, et al. The human ß-globin gene contains multiple regulatory regions: identification of one promoter and two downstream enhancers. EMBO y 1988; 7: 377-84.
  • Peters B, Merezhinskaya N. Diffley JFX, et al. Protein-DNA interations in the ß-globin gene silencer. J Biol Chem 1993; 268: 3430.
  • Raich N, Enver T1 Nakamoto B, et al. Autonomous developmental control of human embryonic globin gene switching in transgenic mice. Science 1990; 250: 1147-9.
  • Stamatoyannopoulos G, Josephson B, Zhang JW, et al. Developmental regulation of human a globin genes in transgenic mice. MoI Cell Biol 1993; 13: 7636-44.
  • Philipsen S, Talbot D, Fraser P, et al. The beta-globin dominant control region-hypersensitive site 2. EMBO J 1990; 9: 2159-67.
  • Talbot D, Philipsen S, Fraser P, et al. Detailed analysis of the site 3 region of the human beta-globin dominant control region. EMBO J 1990; 9: 2169-78.
  • Ney PA, Sorrentino BP, McDonagh KT, et al. Tandem AP-1-binding sites within the human ß-globin dominant control region function as an inducible enhancer in erythroid cells. Genes Dev 1990; 4: 993-1006.
  • Fraser P, Hurst J, Collis P, et al. DNase I Hypersensitive sites 1,2 and 3 of the human beta-globin dominant control region direct positionindependent expression. Nucleic Acids Res 1990; 18: 3503-8.
  • Fraser P, Pruzina S, Antoniou M, et al. Each hypersensitive site of the human ß-globin locus control region confers a different developmental pattern of expression on the globin genes. Genes Dev 1993; 7: 106-13.
  • Stamatoyannopoulos G, Nienhuis AW. Hemoglobin switching. The molecular basis of blood diseases, 2nd ed. W.B. Saunders, Philadelphia; 1994; 107-55.
  • Wijgerde M, Grosveld F, Fraser P. Transcription complex stability and chromatin dynamics in vivo. Nature 1995; 377: 209-13.
  • Ellis J, Talbot D, Dillon N, et al. Synthetic human ß-globin 5'HS2 constructs function as locus control regions only in multicopy transgene concatamers. EMBO J 1993; 12: 127-34.
  • Grosveld F, De Boer E, Dillon N, et al. The dynamics of globin gene expression and gene therapy vectors. Ann NY Acad Sd 1998; 850: 18-27.
  • Stamatoyannopoulos G. Human hemoglobin switching. Science 1991:252: 383.
  • Semenza GL. Transcriptional regulation of gene expression: mechanisms and pathophysiology. Hum Mut 1994; 3: 180-99.
  • Orkin SH. Globin gene regulation and switching: circa 1990. Cell 1990; 63: 665-72.
  • Bieker JJ, Ouyang L, Chen X. Transcriptional factors for specific globin genes. Ann N Y Acad Sd 1998; 850: 64-9.
  • Bieker JJ. Erythroid-specific transcription. Curr Opin Hematol 1998; 5: 145-50.
  • Tsai S-F, Martin DIK, Zon LI, et al. Cloning of cDNA for the major DNA-binding protein of the erythroid lineage through expression in mammalian cells. Nature 1989; 339: 446-51.
  • Weiss MJ, Keller G, Orkin SH. Novel insights into erythroid development revealed through in vitro differentiation of GATA-1-embryonic stem cells. Genes Dev 1994; 8: 1184-97.
  • Fujiwara Y, Browne CP, Cunniff K, et al. Arrested development of embryonic red cell precursors in mouse embryo lacking transcription factor GATA-1. Proc Natl Acad Sd USA 1996; 93: 12355-8.
  • Visvader JE, Elafanty AG, Strasser A, et al. GATA-1 but not SCL induces megakaryocytic differentiation in an early myeloid line. EMBOJ 1992; 11:4557-64.
  • Crossley M, Merika M, Orkin SH. Self-association of the erythroid transcription factor GATA-1 mediated by its zinc finger domains. MoI Cell Biol 1995; 15: 2448-56.
  • Osada H, Grutz GG, Axelson H, et al. LIM-only protein Lmo2 forms a protein complex with erythroid transcription. Leukemia 1997; 11 (Suppl 3): 307-12.
  • McDevitt MA, Fujiwara Y, Shivdasani RA, et al. An upstream, DNase I hypersensitive region of the hematopoeitic-expresed ttranscription factor GATA-I gene confers developmental specificity in transgenic mice. Proc Natl Acad Sd USA 1997; 94: 7976-81.
  • McDevitt MA, Shivdasani RA, Fujiwara Y, et al. A "knockdown" mutation created by cis-element gene targeting reveals the dependence of erythroid cell maturation on the level of transcription factor GATA-I. Proc Natl Acad Sd USA 1997; 94: 6781-5.
  • Tsang AP, Visvader JE, Turner CA, et al. FOG, a multitype zinc finger protein, acts as a cofactor for transcription factor GATA-I in erythroid and megakaryocytic differentiation. Cell 1997; 90: 109-19.
  • Tsang AP, Fujiwara Y, Horn DB, et al. Failure of megakaryopoiesis and arrested erythropoesis in mice lacking the GATA-I transcriptional cofactor FOG. Genes Dev 1998; 12: 1176-88.
  • Ney PA, Andrews NC, Jane SM, et al. Purification of the human NFE2 complex: cDNA cloning of the hematopoietic cell-specific subunit and evidence for an associated partner. MoI Cell Biol 1993; 13: 5604-12.
  • Andrews NC, Erdjumentbromage H, Davidson MB, et al. Erythroid transcription factor NF-E2 is a hematopoietic-specific basic leucine zipper protein. Nature 1993; 362: 722-8.
  • Shivdasani RA, Rosenblatt MF, Zucker-Franklin D, et al. Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoeitin/MGDF in megakaryocyte development. CiH 1995; 81: 695-704.
  • Martin F, van Deursen JM, Shivdasani RA, et al. Erythroid maturation and globin gene expression in mice with combined deficiency of NF-E2 and nrf-2. Blood 1998; 91: 3459-66.
  • Miller IJ, Bieker JJ. A novel, erythroid cell-specific murine transcription factor that binds to the CACCC element and is related to the Krüppel family of nuclear proteins. MoI Cell Biol 1993; 13: 2776-86.
  • Nuez B, Michalovich D, Bygrave A, etal. Defective haematopoiesis in fetal liver resulting from inactivation of the EKLF gene. Nature 1995; 375: 316-8.
  • Perkins AC, Sharpe AH, Orkin SH. Lethal ß-thalassemia in mice lacking the erythroid factor EKLF. Nature 1995; 375: 318-22.
  • Tewari R, Gillemans N, Wijerde M, et al. Erythroid Kruppel-like factor is active in primitive and definitive erythroid cells and is required for the function of 5'HS3 of the beta-globin locus control region. EMBO J 1998; 17: 2334-41.
  • Donze D, Townes TM, Bieker JJ. Role of erythroid Kruppel-like factor in human a- to ß-globin gene switching. J Biol Chem 1995; 270: 1955-9.
  • Perkins AC, Gaensler KML, Orkin SH. Silencing of human fetal globin expression is impaired in the absence of the adult ß-globin gene activator protein EKLF. Proc Natl Acad Sd USA 1996; 93: 12267-71.
  • Guy LG, Mei Q, Perkins AC, et al. Erythroid Kruppel-like factor is essential for beta-globin gene expression even in absence of gene competition, but is not sufficient to induce the switch from gamma-globin to beta-globin gene expression. Blood 1998; 91: 2259-63.
  • Jane SM, Nienhuis AW, Cunningham JM. Hemoglobin switching in man and chicken is mediated by a heterodimeric complex between the ubiquitous trancscription factor CP2 and a developmentally specific protein. EMBO J. 1995; 14: 97-105.
  • Begley CG, Alpan PD, Denning SM, et al. The gene SCL is expressed during early hematopoiesis and encodes a differentiationrelted DMA-binding motif. Proc Natl Acad Sd USA 1989; 86: 10128-32.
  • Robb L, Begley CG. The SCL/Tal 1 gene: roles in normal and malignant haematopoiesis. Bioessays 1997; 19: 607-13.
  • Bockamp EO, McLaughlin F, Gottgens B, et al. Distinct mechanisms direct SCL/tal 1 expression in erythroid cells and CD34 positive myeloid cells. J Biol Chem 1997; 272: 8781-90.
  • Gottgens B, McLaughlin F, Bockamp EO, et al. Transcription of the SCL gene in erythroid and CD34 positive myeloid cells is controlled by a complex network of lineage-restricted chromatin-dependent and chromatin-independent regulatory elements. Oncogene 1997; 15: 2419-28.
  • Elefanty AG, Begley CG, Metcalf D, et al. Characterization of hematopoeitic progenitor cells that express the transcription factor SCL, using lacZ "knock-in" strategy. Proc Natl Acad Sd USA 1998; 95: 11897-902.
  • Warren AJ, Colledge WH, Carlton MB, et al. The oncogenic custeine-rich LIM domain protein rbtn-2 is essential for erythroid development. Cell 1994; 78: 45-57.
  • Yamada Y, Warren AJ, Dobson C, et al. The T cell leukemia LIM protein Lmo2 is necessary for adult mouse hematopoiesis. Proc Natl Acad Sd USA 1998; 95: 3890-5.
  • Wadman IA, Osada H, Grutz GG, et al. The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the tall, E47, GATA-1 and Idbl/NL1 proteins. EMBO J 1997; 16: 3145-57.
  • Curtin P, Pirastu M, Kan YW, et al. A distant gene deletion affects ß-globin gene function in an atypical ?äâ-thalassemia. J Clin Invest 1985; 76: 1554-1558.
  • Driscoll MC, Dobkin CS, Alter BP. ?äâ-thalassemia due to a de novo mutation deleting the 5' ß-globin gene activation-region hypersensitive sites. Proc Natl Acad Sd USA 1989; 86: 7470-4.
  • Kulozik AE, Bail S, Bellan-Koch A, et al. The proximal element of the â globin locus control region is not functionally required in vivo. J Clin Invest 1991; 87: 2142-6.
  • Orkin SH, Old JM, Weatherall DJ, et al. Partial deletion of ß-globin gene DNA in certain patients with ß°-thalassemia. PTOC Natl Acad Sei. USA 1979; 76: 2400.
  • Orkin SH, Goff SC, Nathan DG. Heterogeneity of DNA deletion in aäâ-thalassemia. J CUn Invest 1980; 67: 878-84.
  • Fearon ER, Kazazian HHJ, Waber PG, et al. The entire ß-globin gene cluster is deleted in a form of aäâ-thalassemia. Blood 1983; 61: 1273-8.
  • Trent RJ, Williams BG, Kearney A, et al. Molecular and hématologie characterization of Scottish-Irish type (å?äâ)° thalassemia. Blood 1990; 76: 2132-8.
  • Gonzalez-Redondo JM, Stoming TA, Lanclos KD, et al. Clinical and genetic heterogeneity in black patients with homozygous ß-thalassemiafrom the Southeastern United States. Blood 1988; 72:1007-14.
  • Gonzalez-Redondo JM, Stoming TA, Kutlar A, et al. A C-> T substitution at nt-101 in a conserved DNA sequence of the promoter region of the ß-globin gene is associated with "silent" ß-thalassemia. Blood 1989; 73: 1705-11.
  • Huang S-Z, Wong C, Antonarakis SE, et al. The same TATA box ß-thalassemia mutation in Chinese and US Blacks: another example of independent origins of mutation. Hum Genet 1986; 74: 152.
  • Kulozik AE, Bellan-Koch A, Bail S, et al. Thalassaemia intermedia: moderate reduction of ß-globin gene transcriptional activity by a novel mutation of the proximal CACCC promoter element. Blood 1991:77:2054-8.
  • Antonarakis SE, Orkin SH, Cheng T-C, et al. ß-Thalassemia in American Blacks: novel mutations in the TATA box and IVS-2 acceptor splice site. Proc Natl Acad Sei USA 1984; 81: 1154.
  • Orkin SH, Antonarakis SE, Kazazian HHJ. Base substitution at position -88 in a ß-thalassemic globin gene. J Biol Chem 1984; 259: 8679-81.
  • Ho PJ, Sloane-Stanley J, Athanassiadou A, et al. An in vitro expression system for the analysis of the beta globin gene: validation and application to two mutations in the 5'UTR. Br J Haematol 1999; 106: 938-47.
  • Murru S, Loudianos G, Porcu S, et al. A ß-thalassaemia phenotype not linked to the ß-globin cluster in an Italian family. Br J Haematol 1992; 81: 283-7.
  • Thein SL. Wood WG. Wickramasinghe SN. et al. ß-Thalassemia unlinked to the ß-globin gene in an English family. Blood 1993; 82: 961-7.
  • Neugebauer KM, Roth MB. Transcription units as RNA processing units. Genes Dev 1997; 11: 3279-85.
  • Shatkin AJ. Capping of eukaryotic mRNAs. Cell 1976; 9: 645-53.
  • Colgan DF, Manley JL. Mechanism and regulation of mRNA polyadenylation. Genes Dev 1997; 11: 2755-66.
  • Proudfoot N. PoIy(A) signals. Cell 1991; 64: 671-4.
  • Wähle E, Keller W. The biochemistry of polyadenylation. Trends Biochem Sei 1996; 21: 247-50.
  • LamondAI. Nuclear RNA processing. Curr OpIn Cell Biol 1991; 3: 293-501.
  • Green MR. Biochemical mechanisms of constitutive and regulated pre-mRNA splicing. Anna Rev Cell Biol 1991; 7: 559-99.
  • Chabot B. Directing alternative splicing: cast and scenarios. Trends Genet 1996; 12: 472-8.
  • Staley JP, Guthrie C. Mechanical devices for the spliceosome: motors, clocks, springs, and things. Cell 1998; 92: 315-26.
  • Aebi M, Weissman C. Precision and orderliness in splicing. Trends Genet 1987; 3: 102-7.
  • HorowitzDS, KrainerAD. Mechanisms for selecting 5' splice sites in mammalian pre-mRNA splicing. Trends Genet 1994; 10: 100-6.
  • Tian M, Maniatis T. A splicing enhancer exhibits both constitutive and regulated activities. Genes Dev 1994; 8: 1703-12.
  • Ruskin B, Greene JM, Green MR. Cryptic branch point activation allows accurate in vitro splicing of human ß-globin intron mutants. CiH 1985;41: 833-44.
  • Lewin B. Alternatives for splicing: recognizing the ends of introns. CiH 1980; 22: 324-6.
  • Robberson BL, Cote GJ, Berget SM. Exon definition may facilitate splice site selection in RNAs with multiple exons. MoI Cell Biol 1990; 10: 84-94.
  • Reed R, Maniatis T. A role for exon sequences and splice-site proximity in splice-site selection. Cell 1986; 46: 681-90.
  • Wieringa B, Hofer E, Weissmann C. A minimal intron length but no specific internal sequence is required for splicing the large rabbit ß-globin intron. Cell 1984; 37: 915-25.
  • Treisman R, Orkin SH, Maniatis T. Specific transcription and RNA splicing defects in five cloned ß-thalassaemia genes. Nature 1983; 302: 591-6.
  • Atweh GF. Wong CR, Reed R, et al. A new mutation in IVS-I of the human ß-globin gene causing ß-thalassaemia due to abnormal splicing. Blood 1987; 70: 147-51.
  • Treisman R, Proudfoot NJ, Shander M, et al. A single base change at a splice site in a ß°-thalassemic gene causes abnormal RNA splicing. CiH 1982:29:903-11.
  • Cheng TC, Orkin SH, Antonarakis SE, et al. ß-Thalassemia in Chinese: use of in vivo RNA analysis and oligonucleotide hybridization in systematic characterization of molecular defects. Proc Natl AcadSci USA 1984; 81: 2821.
  • Ho PJ, Hall GW, Watt S, et al. Unusually severe heterozygous â thalassemia: evidence for an interacting gene affecting globin translation. Blood 1998; 92: 3428-35.
  • Busslinger M, Moschonas N, Flavell RA. â+ thalassemia: aberrant splicing results from a single point mutation in an intron. Cell 1981; 27: 289-98.
  • Spritz RA, Jagadeeswaran P, Choudary PV, et al. Base substitution in an intervening sequence of a â+ -thalassemic human globin gene. Proc Natl Acad Sd USA 1981 ; 78: 2455.
  • Goldsmith ME, Humphries RK, Ley T, et al. Silent substitution in â+-thalassemia gene activating a cryptic splice site in ß-globin RNA coding sequence. Proc Natl Acad Sd USA 1983; 80: 2318.
  • Orkin SH, Kazazian HHJ, Antonarakis SE, et al. Abnormal RNA processing due to the exon mutation of ßE-globin gene. Nature 1982; 300: 768-9.
  • Orkin S, Antonarakis S, Loukopoulos D. Abnormal processing of ßKno» RNA Blogd 1984. 311-3
  • Lowenhaupt K, Lingrel JB. A change in the stability of globin mRNA during the induction of murine erythroleukemia cells. Cell 1978; 14: 337-44.
  • Volloch V, Housman D. Stability of globin mRNA in terminally differentiating murine erythroleukemia cells. Cell 1981; 23: 509-14.
  • Sachs AB. Messenger RNA degradation in eukaryotes. Cell 1993; 74: 413-21.
  • Ross J. mRNA stability in mammalian cells. Microbiol Rev 1995; 59: 423-50.
  • Ross J. A hypothesis to explain why translation inhibitors stabilize mRNAs in mammalian cells: mRNA stability and mitosis. BioEssays 1997; 19: 527-9.
  • Maquat LE, Kinniburgh AJ, Rachmilewitz EA, et al. Unstable ß-globin mRNA in mRNA-deficient ß° thalassemia. Cell 1981; 27: 543-53.
  • Lim S-K, Mullins JJ, Chen C-M, et al. Novel metabolism of several ß°-thalassemic ß-globin mRNAs in the erythroid tissues of transgenic mice. EMBO J 1989; 8: 2613-9.
  • Lim S-K, Maquat LE. Human ß-globin mRNAs that harbor a nonsense codon are degraded in murine erythroid tissues to intermediates lacking regions of exon I or exons I and II that have a cap-like structure at the 5' termini. EMBO J 1992; 11: 3271-8.
  • Lim S-K, Sigmund CD, Gross KW, et al. Nonsense codons in human ß-globin mRNA result in the production of mRNA degradation products. MoI Cell Biol 1992; 12: 1149-61.
  • Cheng J, Maquat LE. Nonsense codons can reduce the abundance of nuclear mRNA without affecting the abundance of Pre-mRNA or the half-life of cytoplasmic mRNA. MoI Cell Biol 1993; 13: 1892-902.
  • Urlaub G, Mitchell PJ, Ciudad CJ, et al. Nonsense mutations in the dihydrofolate reductase gene affect RNA processing. MoI Cell Biol 1989; 9: 2868-80.
  • Paw BH, Neufeld EF. Normal transcription of the ß-hexosaminidase ß-chain gene in the Ashkenazi Tay-Sachs mutation. J Biol Chem 1988; 263: 3012-5.
  • Humphries RK, Ley TJ, Anagnou NP, et al. ß°-39 thalassemia gene: a premature termination codon causes ß-mRNA deficiency without affecting cytoplasmic ß-mRNA stability. Blood 1984; 64: 23-32.
  • Takeshita K, Forget B, Scarpa A, et al. Intranuclear defect in ß-globin mRNA accumulation due to a premature translation termination codon. Blood 1984; 64: 13-22.
  • Baserga SJ, Benz EJ Jr. ß-Globin nonsense mutation: deficient accumulation of mRNA occurs despite normal cytoplasmic stability. Proc Natl Acad Sd USA 1992; 89: 2935-9.
  • Kugler W. Enssle J, Hentze MW et al. Nuclear degradation of nonsense mutated-globin mRNA: a post-transcriptional mechanism to protect hétérozygotes from several clinical manifestation of ß-thalassemia? Nucleic Acids Res 1995; 23: 413-8.
  • Belgrader P1 Cheng J1 Maquat LE. Evidence to implicate translation by ribosomes in the mechanism by which nonsense codons reduce the nuclear level of human triosephosphate isomerase mRNA. Proc Natl Acad Sei USA 1993; 90: 482-6.
  • Hall GW, Thein SL. Nonsense codon mutations in the terminal exon of the ß-globin gene are not associated with a reduction in ß-mRNA accumulation: a mechanism for the phenotype of dominant ß-thalassemia. Blood 1994; 83: 2031-7.
  • Ho PJ, Wickramasinghe SN, Rees DC, et al. Erythroblastic inclusions in dominantly inherited ß-thalassaemias. Blood 1997; 89: 322-8.
  • Thermann R, Neu-Yilik G, Deters A, et al. Binary specification of nonsense codons by splicing and cytoplasmic translation. EMBO J 1998; 17: 3484-94.
  • Zhang J, Sun X, Qian Y, et al. Intron function in the nonsensemediated decay of ß-globin mRNA: indications that pre-mRNA splicing in the nucleus can influence mRNA translation in the cytoplasm. RNA 1998; 4: 801-15.
  • Bernstein P, Peltz SW, Ross J. The poly(A)-poly(A)-binding protein complex is a major determinant of mRNA stability in vitro. MoI Cell Biol 1989; 9: 659-70.
  • Ford LP, Bagga PS, Wilusz J. The poly(A) tail inhibits the assembly of a 3'-to-5' exonuclease in an in vitro RNA stability system. MoI Cell Biol 1997; 17: 398-406.
  • Orkin SH, Cheng T-C, Antonarakis SE, et al. Thalassemia due to a mutation in the cleavage-polyadenylation signal of the human ß-globin gene. EMBO 1 1985; 4: 453-6.
  • Antoniou M, Geraghty F, Hurst J, et al. Efficient 3'-end formation of human beta-globin mRNA in vivo requires sequences within the last intron but occurs independently of the splicing reaction. Nucleic Acids Res 1998; 26: 721-9.
  • Klausner RD, Rouault TA, Harford JB. Regulating the fate of mRNA: the control of cellular iron metabolism. Cell 1993; 72: 19-28.
  • Shaw G, Kamen R. A conserved AU sequence from the 3' untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 1986; 46: 659-67.
  • Wang X, Kiledjian M, Weiss IM, et al. Detection and characterisation of a 3' untranslated region ribonucleoprotein complex associated with human ß-globin mRNA stability. MoI Cell Biol 1995; 15: 1769-1777.
  • Weiss IM, Liebhaber SA. Erythroid cell-specific determinants of ß-globin mRNA stability. MoI Cell Biol 1994; 14: 8123-32.
  • Jankovic L, Dimovski AJ, Kollia P, et al. A C->G mutation at nt position 6 3' to the terminating codon may be the cause of a silent ß-thalassemia. Int J Hematol 1991; 54: 289.
  • Basak AN, Özer A, Kirdar B, et al. A novel 13 bp deletion in the 3'UTR of the ß-globin gene causes ß-thalassemia in a Turkish patient. Hemoglobin 1993; 17: 551-5.
  • Maragoudaki E, Vrettou C, Kanavakis E, et al. Molecular, haematological and clinical studies of a silent ß-gene C-G mutation at 6bp 3' to the termination codon ( + 1480 C-G) in twelve Greek families. Br J Haematol 1998; 103: 45-51.
  • Lewis JD, Izzaurralde E. The role of the cap structure in RNA processing and nuclear export. Eur J BiocHem 1997; 247: 461-9.
  • Johnston JM, Carrol] WL. c-myc hypermutation in Burkitt's lymphoma. Leak Lymphoma 1992; 8: 431-9.
  • Kozak M. The scanning model for translation: an update. J Cell Biol 1989; 108: 229-41.
  • Sachs AB, Sarnow P, Hentze MW. Starting at the beginning, middle and end: translation initiation in eukaryotes. Cell 1997; 89: 831-8.
  • Roualt TA, Hentze MW, Caughman SW, et al. Binding of a cytosolic protein to the iron-responsive element of human ferritin messenger RNA. Science 1988; 241: 1207-10.
  • Dix DJ, Lin P-N, Kimata Y, et al. The iron regulatory region of ferritin mRNA is also a positive control element for iron-independent translation. Biochemistry 1992; 31: 2818-22.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.