196
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Effects of increased pH and inorganic carbon on growth and photosynthesis in the macroalga Gracilaria lemaneiformis (Gigartinales, Rhodophyta)

, , &
Pages 218-226 | Received 28 Mar 2019, Accepted 17 Feb 2020, Published online: 24 Apr 2020

REFERENCES

  • Axelsson L., Mercado J.M. & Figueroa F.L. 2000. Utilization of HCO3− at high pH by the brown macroalga Laminaria Saccharina. European Journal of Phycology 35: 53–59. DOI:10.1080/09670260010001735621.
  • Axelsson L., Ryberg H. & Beer S. 1995. Two modes of bicarbonate utilization in the marine green macroalga Ulva Lactuca. Plant Cell and Environment 18: 439–445. DOI:10.1111/j.1365-3040.1995.tb00378.x.
  • Beer S., Björk M. & Beardall J. 2014. Photosynthesis in the marine environment. Wiley & Sons, New York, New York. 224 pp.
  • Beer S. & Eshel A. 1985. Determining phycoerythrin and phycocyanin concentrations in aqueous crude extracts of red algae. Marine and Freshwater Research 36: 785–792. DOI:10.1071/MF9850785.
  • Behrenfeld M.J., Prasil O., Babin M. & Bruyant F. 2004. In search of a physiological basis for covariations in light-limited and light-saturated photosynthesis. Journal of Phycology 40: 4–25. DOI:10.1046/j.1529-8817.2004.03083.x.
  • Bowes G. 1993. Facing the inevitable: plants and increasing atmospheric CO2. Annual Review of Plant Biology 44: 309–332. DOI:10.1146/annurev.pp.44.060193.001521.
  • Cornwall C.E., Hepburn C.D., Pritchard D., Currie K.I., McGraw C.M. & Hunter K.A. 2012. Carbon-use strategies in macroalgae: differential responses to lowered pH and implications for ocean acidification. Journal of Phycology 1: 137–144. DOI:10.1111/j.1529-8817.2011.01085.x.
  • Deng Y.Y. 2015. Effects of elevated atmospheric CO2 on photosynthesis of three species of marine macroalgae grown under different conditions. Master’s thesis. South China University of Technology. Guangzhou, Guangdong, China. [in Chinese with English abstract].
  • Ding L.P., Huang B.X. & Wang H.W. 2015. New classification system of marine red algae of China. Guangxi Science 2: 164–188. [in Chinese with English abstract].
  • Fao R, & FI. 2014. The state of world fisheries and aquaculture, 2012. State of World Fisheries and Aquaculture 4: 40–41.
  • Gao K.S., Aruga Y. & Asada K. 1993. Effect of inorganic carbon supply on the photosynthesis of the red algae Gracilaria sp. and G. chilensis. Journal of Applied Phycology 5: 563–571. DOI:10.1007/BF02184635.
  • García-Sánchez M.J. & Niell X. 1994. Effect of inorganic carbon supply on the photosynthetic physiology of Gracilaria tenuistipitata. Planta 194: 55–61. DOI:10.1007/BF00201034.
  • Giordano M. & Beardall J.R. 2005. CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annual Review of Plant Biology 56: 99–131. DOI:10.1146/annurev.arplant.56.032604.144052.
  • Gordillo F.J., Niell F.X. & Figueroa F.L. 2001. Non-photosynthetic enhancement of growth by high CO2 level in the nitrophilic seaweed Ulva rigida C. Agardh (Chlorophyta). Planta 213: 64–70. DOI:10.1007/s004250000468.
  • Gordillo F.J.L., Figueroa F.L. & Niell F.X. 2003. Photon- and carbon-use efficiency in Ulva rigida at different CO2 and N levels. Planta 218: 315–322. DOI:10.1007/s00425-003-1087-3.
  • Goudriaan J. 1993. Interaction of ocean and biosphere in their transient responses to increasing atmospheric CO2. Vegetatio 104–105: 329–337. DOI:10.1007/BF00048163.
  • Haglund K., Björk M. & Ramazanov Z. 1992. Role of carbonic anhydrase in photosynthesis and inorganic-carbon assimilation in the red alga Gracilaria tenuistipitata. Planta 187: 275–281.
  • Hwang E.K., Yotsukura N., Pang S.J., Su L. & Shan T.F. 2019. Seaweed breeding programs and progress in eastern Asian countries. Phycologia 58: 484–495. DOI:10.1080/00318884.2019.1639436.
  • Jiang H., Zou D.H. & Chen B.B. 2016a. Effects of lowered carbon supplies on two farmed red seaweeds, Pyropia haitanensis (Bangiales) and Gracilaria lemaneiformis (Gracilariales), grown under different sunlight conditions. Journal of Applied Phycology 28: 3469–3477. DOI:10.1007/s10811-016-0882-8.
  • Jiang H., Zou D.H. & Li X.H. 2016b. Growth, photosynthesis and nutrient uptake by Grateloupia livida (Halymeniales, Rhodophyta) in response to different carbon levels. Phycologia 55: 462–468. DOI:10.2216/16-11.1.
  • Larsson C. & Axelsson L. 1999. Bicarbonate uptake and utilization in marine macroalgae. European Journal of Phycology 34: 79–86. DOI:10.1080/09670269910001736112.
  • Liu L., Ding L.L., Chen W.Z. & Zou D.H. 2013. The combined effects of increasing CO2 concentrations and different temperatures on the growth and chlorophyll fluorescence in Porphyra haitanensis (Bangiales, Rhodophyta). Acta Ecologica Sinica 33: 3916–3924. [in Chinese with English abstract]. DOI: 10.5846/stxb201208031100.
  • Liu Y.T. 2011. Physiological responses of two macroalgae to the changes in seawater carbonate system. PhD thesis. Xiamen University, Xiamen, Fujian, China. [in Chinese with English abstract].
  • Maberly S.C. 1990. Exogenous sources of inorganic carbon for photosynthesis by marine macroalgae. Journal of Phycology 26: 439–449. DOI:10.1111/j.0022-3646.1990.00439.x.
  • Makino A. & Mae T. 1999. Photosynthesis and plant growth at elevated levels of CO2. Plant and Cell Physiology 40: 999–1006. DOI:10.1093/oxfordjournals.pcp.a029493.
  • Mercado J.M. & Gordilio F.J. 1999. Effect of different levels of CO2 on photosynthesis and cell components of the red alga. Porphyra leucosticta. Journal of Applied Phycology 11: 455–461. DOI:10.1023/A:1008194223558.
  • Mercado J.M. & Gordillo F.J.F. 2011. Inorganic carbon acquisition in algal communities: are the laboratory data relevant to the natural ecosystems? Photosynthesis Research 109: 257–267. DOI:10.1007/s11120-011-9646-0.
  • Middelboe A.L. & Hansen P.H. 2007. Direct effects of pH and inorganic carbon on macroalgal photosynthesis and growth. Marine Biology Research 3: 134–144. DOI:10.1080/17451000701320556.
  • Moore B.D., Cheng S.H. & Sims D. 1999. The biochemical and molecular basis for photosynthetic acclimation to elevated atmospheric CO2. Plant Cell and Environment 22: 567–582. DOI:10.1046/j.1365-3040.1999.00432.x.
  • Pajusalu L., Martin G., Paalme T. & Põllumäe A. 2016. The effect of CO2 enrichment on net photosynthesis of the red alga Furcellaria lumbricalis in a brackish water environment. PeerJ 4: e2505. DOI: 10.7717/peerj.2505.
  • Pajusalu L., Martin L., Põllumäe G.A., Torn K. & Paalme T. 2015. Direct effects of increased CO2 concentrations in seawater on the net primary production of charophytes in a shallow, coastal, brackish-water ecosystem. Boreal Environment Research 20: 413–422.
  • Porrar J. 2002. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynthesis Research 73: 149–156. DOI:10.1023/A:1020470224740.
  • Quan W., Ying M.M., Kang H.J., Xu C.L., Zhou Q.H., Liang W.J., Lin Z.S. & Cai J.B. 2014. Marine algae culture and the estimation of carbon sink capacity in the coastal area of China. Journal of Fisheries of China 38: 510–515. [in Chinese with English abstract].
  • Ralph P.J. & Gademann R. 2005. Rapid light curves: a powerful tool to assess photosynthetic activity. Aquatic Botany 82: 222–237. DOI:10.1016/j.aquabot.2005.02.006.
  • Raven J.A. 1997. Inorganic carbon acquisition by marine autotrophs. Advances in Botanical Research 27: 85–209.
  • Raven J.A. & Beardall J. 2014. CO2 concentrating mechanisms and environmental change. Aquatic Botany 118: 24–37. DOI:10.1016/j.aquabot.2014.05.008.
  • Roberts D. 2014. Updating what we know about ocean acidification and key global challenges. The Knowledge Base 2012, EPOCA, UKOA, BIOACID and MedSeA3: 1–8.
  • White D.A., Pagarette A. & Rooks P. 2013. The effect of sodium bicarbonate supplementation on growth and biochemical composition of marine microalgae cultures. Journal of Applied Phycology 25: 153–165. DOI:10.1007/s10811-012-9849-6.
  • Williams S.L. & Dethier M.N. 2005. High and dry: variation in net photosynthesis of the intertidal seaweed Fucus gardneri. Ecology 9: 2373–2379. DOI:10.1890/04-1569.
  • Xu J.T. & Gao K.S. 2010. The influence of carbon dioxide and solar UVR on the growth, photosynthesis and pigments contents of Gracilaria lemaneiformis. Acta Oceanologica Sinica 32: 144–151.
  • Xu Z.G., Zou D.H. & Zhang X. 2008. Effects of increased atmospheric CO2 and N supply on growth, biochemical compositions and uptake of nutrients in Gracilaria lemaneiformis (Rhodophyta). Acta Ecologica Sinica 28: 3752–3759.
  • Zeebe R.E. & Wolf-Gladrow D. 2001. CO2 in seawater: equilibrium, kinetics isotopes. Elsevier, Oxford, UK. 341 pp.
  • Zhao Y.K., Zhang W.S. & Wang Y.N. 2008. Research progress in physiology and molecular biology of plant responses to high pH. China Agricultural Economic Review 16: 783–787. [in Chinese with English abstract].
  • Zheng W., Zhong Z.H., Yang Z., Liu Y.M. & Xu J.T. 2014. Effects of elevated CO2 concentration on the photosynthetic physiological characteristics of Gracilaria lemaneiformis grown under different light levels. Acta Ecologica Sinica 34: 7293–7299. [in Chinese with English abstract].
  • Zou D.H. & Gao K.S. 2001. Progress in studies on photosynthesis inorganic carbon utilization in marine macroalgae. Bulletin of Marine Science 20: 83–90.
  • Zou D.H. & Gao K.S. 2002. Effects of elevated CO2 concentration on the photosynthesis and related physiological processes in marine macroalgae. Acta Ecologica Sinica 22: 1750–1757. [in Chinese with English abstract].
  • Zou D.H., Gao K.S. & Luo H.J. 2011. Short- and long-term effects of elevated CO2 on photosynthesis and respiration in the marine macroalga Hizikia fusiformis (Sargassaceae, Phaeophyta) grown at low and high N supplies. Journal of Phycology 47: 87–97. DOI:10.1111/j.1529-8817.2010.00929.x.
  • Zou D.H., Xia J.R. & Yang Y.Y. 2004. Photosynthetic use of exogenous inorganic carbon in the agarophyte Gracilaria lemaneiformis (Rhodophyta). Aquaculture 237: 421–431. DOI:10.1016/j.aquaculture.2004.04.020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.