306
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Enhancement of antioxidant properties of Gongolaria barbata (Phaeophyceae) by optimization of combined light intensity and salinity stress

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 584-594 | Received 20 Dec 2021, Accepted 05 Jul 2022, Published online: 08 Aug 2022

REFERENCES

  • Abomohra A.E., El-Naggar A.H., Alaswad S.O., Elsayed M., Li M. & Li W. 2020. Enhancement of biodiesel yield from a halophilic green microalga isolated under extreme hypersaline conditions through stepwise salinity adaptation strategy. Bioresource Technology 310: Article 123462. DOI: 10.1016/j.biortech.2020.123462.
  • Abomohra A.E.-F., El-Hefnawy M.E., Wang Q., Huang J., Li L., Tang J. & Mohammed S. 2021a. Sequential bioethanol and biogas production coupled with heavy metal removal using dry seaweeds: towards enhanced economic feasibility. Journal of Cleaner Production 316: Article 128341. DOI: 10.1016/j.jclepro.2021.128341.
  • Abomohra A.E.-F., Zheng X., Wang Q., Huang J. & Ebaid R. 2021b. Enhancement of biodiesel yield and characteristics through in-situ solvo-thermal co-transesterification of wet microalgae with spent coffee grounds. Bioresource Technology 323: Article 124640. DOI: 10.1016/j.biortech.2020.124640.
  • Ak İ. & Türker G. 2018. Antioxidant properties and phytochemicals of three brown macro algae from the Dardanelles (Çanakkale) Strait. Agricultural Science and Technology 10: 354–357. DOI: 10.15547/ast.2018.04.065.
  • Ak İ. & Türker G. 2019. Antioxidant activities of Eucheuma sp. (Rhodophyceae) and Laminaria sp. (Phaeophyceae). Turkish Journal of Agriculture - Food Science and Technology 7(SPI): 154–159. DOI: 10.24925/turjaf.v7isp1.154-159.2791.
  • Ak İ., Çankırılıgil E.C., Türker G. & Sever O. 2021. Assessment of light intensity and salinity regimes on the element levels of brown macroalgae, Treptacantha barbata: application of response surface methodology (RSM). Food Science and Technology 41: 944–952. DOI: 10.1590/fst.25220.
  • Al-Dulaimi O., Rateb M.E., Hursthouse A.S., Thomson G. & Yaseen M. 2021. The brown seaweeds of Scotland, their importance and applications. Environments 8: Article 59. DOI: 10.3390/environments8060059.
  • Bastos G.F.P.C. 2019. Cultivation of the wild seaweed Gracilaria gracilis under laboratory scale: the effect of light intensity and nutrients on growth, pigment and total soluble protein content. MSc thesis. Instituto Politécnico de Leiria, Portugal. http://hdl.handle.net/10400.8/4384
  • Bermejo R., Macías M., Sánchez-García F., Love R., Varela-Álvarez E. & Hernández I. 2020. Influence of irradiance, dissolved nutrients and salinity on the colour and nutritional characteristics of Gracilariopsis longissima (Rhodophyta). Algal Research 52: Article 102121. DOI: 10.1016/j.algal.2020.102121.
  • Brand-Williams W., Cuvelier M.E. & Berset C. 1995. Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology 28: 25–30. DOI: 10.1016/S0023-6438(95)80008-5.
  • Bunsom C. & Prathep A. 2012. Effects of salinity, light intensity and sediment on growth, pigments, agar production and reproduction in Gracilaria tenuistipitata from Songkhla Lagoon in Thailand. Phycological Research 60: 169–178. DOI: 10.1111/j.1440-1835.2012.00648.x.
  • Buschmann A.H., Camus C., Infante J., Neori A., Israel Á., Hernández-González M.C., Pereda S.V., Gomez-Pinchetti J.L., Golberg A., Tadmor-Shalev N. et al. 2017. Seaweed production: overview of the global state of exploitation, farming and emerging research activity. European Journal of Phycology 52: 391–406. DOI: 10.1080/09670262.2017.1365175.
  • Caf F., Şen Özdemir Ö.N., Yılmaz Ö., Durucan F. & Ak İ. 2019. Fatty acid and lipophilic vitamin composition of seaweeds from Antalya and Çanakkale (Turkey). Grasas Y Aceites 70: Article e312. DOI: 10.3989/gya.0704182.
  • Chakdar H. & Pabbi S. 2017. Algal pigments for human health and cosmeceuticals. In: Algal green chemistry (Ed. by R.P. Rastogi, D. Madamwar & A. Pandey), pp 171–188. Elsevier, Amsterdam, Netherlands.
  • COST Association. 2022. Tomorrow’s ‘wheat of the sea’. The European Cooperation in Science and Technology (COST). https://www.cost.eu/; ( searched on 20 March 2022).
  • Derringer G. & Suich R. 1980. Simultaneous optimization of several response variables. Journal of Quality Technology 12: 214–219. DOI: 10.1080/00224065.1980.11980968.
  • Design Expert, 2022. “Version 7.15. Stat-Ease,” Design Expert Inc., Minneapolis, .
  • Ding L., Ma Y., Huang B. & Chen S. 2013. Effects of seawater salinity and temperature on growth and pigment contents in Hypnea cervicornis J. Agardh (Gigartinales, Rhodophyta). BioMed Research International 2013: Article 594308. DOI: 10.1155/2013/594308.
  • Djeridane A., Yousfi M., Nadjemi B., Boutassouna D., Stocker P. & Vidal N. 2006. Antioxidant activity of some algerian medicinal plants extracts containing phenolic compounds. Food Chemistry 97: 654–660. DOI: 10.1016/j.foodchem.2005.04.028.
  • Duan X.-J., Zhang -W.-W., Li X.-M. & Wang B.-G. 2006. Evaluation of antioxidant property of extract and fractions obtained from a red alga, Polysiphonia urceolata. Food Chemistry 95: 37–43. DOI: 10.1016/j.foodchem.2004.12.015.
  • El Zawawy N., El Shafay S. & Abomohra A.E.-F. 2020. Macroalgal activity against fungal urinary tract infections: in vitro screening and evaluation study. Rendiconti Lincei. Scienze Fisiche e Naturali 31: 165–175. DOI: 10.1007/s12210-019-00856-y.
  • Food and Agriculture Organization. 2021. The state of world fisheries and aquaculture 2019. Sustainability in action. FAO Fisheries and Aquaculture Department, Rome. 206 pp.
  • Freile-Pelegrín Y. & Robledo D. 2014. Bioactive phenolic compounds from algae. In: Bioactive compounds from marine foods: plant and animal sources (Ed. by B. Hernández-Ledesma & M. Herrero), pp 113–129. John Wiley & Sons, London, UK.
  • Guiry M.D. & Guiry G.M. 2021. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org; searched on 10 October 2021.
  • Jeffrey S.W. & Humphrey G.F. 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen 167: 191–194. DOI: 10.1016/S0015-3796(17)30778-3.
  • Jiang H., Zou D. & Chen B. 2018. Effects of reduced carbon supply and sunlight on photosynthetic and antioxidant activities of Gracilariopsis lemaneiformis, and subsequent changes of these activities under recovery conditions with different salinities. Aquaculture 493: 258–263. DOI: 10.1016/j.aquaculture.2018.05.014.
  • Kang L.-K., Huang Y.-J., Lim W.-T., Hsu P.-H. & Hwang P.-A. 2020. Growth, pigment content, antioxidant activity, and phytoene desaturase gene expression in Caulerpa lentillifera grown under different combinations of blue and red light-emitting diodes. Journal of Applied Phycology 32: 1971–1982. DOI: 10.1007/s10811-020-02082-8.
  • Kumar M., Kumari P., Reddy C.R.K. & Jha B. 2014. Salinity and desiccation induced oxidative stress acclimation in seaweeds. Advances in Botanical Research 71: 91–123. DOI: 10.1016/B978-0-12-408062-1.00004-4.
  • Künili M. & Ak İ. 2020. Effect of liquid seaweed extract on growth and biochemical composition of Treptacantha barbata (Phaeophyceae). COMU Journal of Marine Sciences and Fisheries 3: 111–119 [in Turkish with English abstract]. DOI: 10.46384/jmsf.819485.
  • Levin G., Kulikovsky S., Liveanu V., Eichenbaum B., Meir A., Isaacson T., Tadmor Y., Adir N. & Schuster G. 2021. The desert green algae Chlorella ohadii thrives at excessively high light intensities by exceptionally enhancing the mechanisms that protect photosynthesis from photoinhibition. The Plant Journal 106: 1260–1277. DOI: 10.1111/tpj.15232.
  • Li J., Liu Y., Liu Y., Wang Q., Gao X. & Gong Q. 2019. Effects of temperature and salinity on the growth and biochemical composition of the brown alga Sargassum fusiforme (Fucales, Phaeophyceae). Journal of Applied Phycology 31: 3061–3068. DOI: 10.1007/s10811-019-01795-9.
  • Lichtenthaler H.K. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology 148: 350–382. DOI: 10.1016/0076-6879(87)48036-1.
  • Lobban C.S. & Harrison P.J. 1994. Seaweed ecology and physiology. Cambridge University Press, Cambridge, UK. 366 pp.
  • Magnusson M., Mata L., Wang N., Zhao J., de Nys R. & Paul N.A. 2015. Manipulating antioxidant content in macroalgae in intensive land-based cultivation systems for functional food applications. Algal Research 8: 153–160. DOI: 10.1016/j.algal.2015.02.007.
  • McLachlan J. 1964. Some considerations of the growth of marine algae in artificial media. Canadian Journal of Microbiology 10: 769–782. DOI: 10.1139/m64-098.
  • Öztaşkent C. & Ak İ. 2021. Effect of LED light sources on the growth and chemical composition of brown seaweed Treptacantha barbata. Aquaculture International 29: 193–205. DOI: 10.1007/s10499-020-00619-9.
  • Pereira L. 2017. Therapeutic and nutritional uses of algae, ed. 1. CRC Press, Boca Raton, Florida, USA.
  • Pliego-Cortés H., Caamal-Fuentes E., Montero-Muñoz J., Freile-Pelegrín Y. & Robledo D. 2017. Growth, biochemical and antioxidant content of Rhodymenia pseudopalmata (Rhodymeniales, Rhodophyta) cultivated under salinity and irradiance treatments. Journal of Applied Phycology 29: 2595–2603. DOI: 10.1007/s10811-017-1085-7.
  • Quettier-Deleu C., Gressier B., Vasseur J., Dine T., Brunet C., Luyckx M., Cazin M., Cazin J.-C., Bailleul F. & Trotin F. 2000. Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. Journal of Ethnopharmacology 72: 35–42. DOI: 10.1016/S0378-8741(00)00196-3.
  • Singh A., Rana H. & Pandey A. 2020. Analysis of chlorophylls. In: Recent advances in natural products analysis (Ed. by S. Nabavi, M. Saeedi, S. Nabavi & A. Sanches Silva), pp 635–650. Elsevier, New York, New York, USA.
  • Toth G.B., Harrysson H., Wahlström N., Olsson J., Oerbekke A., Steinhagen S., Kinnby A., White J., Albers E., Edlund U. et al. 2020. Effects of irradiance, temperature, nutrients, and pCO2 on the growth and biochemical composition of cultivated Ulva fenestrata. Journal of Applied Phycology 32: 3243–3254. DOI: 10.1007/s10811-020-02155-8.
  • Troell M., Halling C., Nilsson A., Buschmann A.H., Kautsky N. & Kautsky L. 1997. Integrated marine cultivation of Gracilaria chilensis (Gracilariales, Rhodophyta) and salmon cages for reduced environmental impact and increased economic output. Aquaculture 156: 45–61. DOI: 10.1016/S0044-8486(97)00080-X.
  • Vega J., Álvarez-Gómez F., Güenaga L., Figueroa F.L. & Gómez-Pinchetti J.L. 2020. Antioxidant activity of extracts from marine macroalgae, wild-collected and cultivated, in an integrated multitrophic aquaculture system. Aquaculture 522: Article 735088. DOI: 10.1016/j.aquaculture.2020.735088.
  • Wedchaparn O., Ayisi C.L., Huo Y. & He P. 2015. Effects of different light intensity fluctuations on growth rate, nutrient uptake and photosynthetic efficiency of Gracilaria asiatica. Journal of Fisheries and Aquatic Science 10: 533–542. DOI: 10.3923/jfas.2015.533.542.
  • Wu H., Jiang H., Liu C. & Deng Y. 2015. Growth, pigment composition, chlorophyll fluorescence and antioxidant defenses in the red alga Gracilaria lemaneiformis (Gracilariales, Rhodophyta) under light stress. South African Journal of Botany 100: 27–32. DOI: 10.1016/j.sajb.2015.05.017.
  • Zepeda E., Freile-Pelegrín Y. & Robledo D. 2020. Nutraceutical assessment of Solieria filiformis and Gracilaria cornea (Rhodophyta) under light quality modulation in culture. Journal of Applied Phycology 32: 2363–2373. DOI: 10.1007/s10811-019-02023-0.
  • Zou X.X., Xing S.S., Su X., Zhu J., Huang H. & Bao S. 2018. The effects of temperature, salinity and irradiance upon the growth of Sargassum polycystum C. Agardh (Phaeophyceae). Journal of Applied Phycology 30: 1207–1215. DOI: 10.1007/s10811-017-1282-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.