205
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

A look to the future acidified ocean through the eyes of the alien and invasive alga Caulerpa cylindracea (Chlorophyta, Ulvophyceae)

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 628-640 | Received 12 Nov 2021, Accepted 06 Sep 2022, Published online: 09 Oct 2022

REFERENCES

  • Aiuppa A., Hall-Spencer J.M., Milazzo M., Turco G., Caliro S. & Di Napoli R. 2020. Volcanic CO2 seep geochemistry and use in understanding ocean acidification. Biogeochemistry 152: 93–115. DOI: 10.1007/s10533-020-00737-9.
  • Balestri E., Vallerini F., Menicagli V., Barnaba S. & Lardicci C. 2018. Biotic resistance and vegetative propagule pressure co-regulate the invasion success of a marine clonal macrophyte. Scientific Reports 8: Article 16621. DOI: 10.1038/s41598-018-35015-0.
  • Beer S., Björk M., Gademann R. & Ralph P. 2001. Measurements of photosynthetic rates in seagrasses. In: Global seagrass research methods – measurements of photosynthetic rates in seagrasses (Ed. by F.T. Short & R.G. Coles), pp 183–198. Elsevier, Amsterdam, Netherlands. DOI: 10.1016/B978-044450891-1/50010-4.
  • Bellissimo G., Lluch J.R., Tomasello A. & Calvo S. 2014. The community of Cystoseira brachycarpa J. Agardh emend. Giaccone (Fucales, Phaeophyceae) in a shallow hydrothermal vent area of the Aeolian Islands (Tyrrhenian Sea, Italy). Plant Biosystems 148: 21–26. DOI: 10.1080/11263504.2013.778350.
  • Bitter M.C., Kapsenberg L., Silliman K., Gattuso J.-P. & Pfister C.A. 2021. Magnitude and predictability of pH fluctuations shape plastic responses to ocean acidification. The American Naturalist 197: 486–501. DOI: 10.1086/712930.
  • Bonamour S., Chevin L.M., Charmantier A. & Teplitsky C. 2019. Phenotypic plasticity in response to climate change: the importance of cue variation. Philosophical Transactions Royal Society B 374: Article 20180178. DOI: 10.1098/rstb.2018.0178.
  • Britton D., Mundy C.N., McGraw C.M., Revill A.T. & Hurd C.L. 2019. Responses of seaweeds that use CO2 as their sole inorganic carbon source to ocean acidification: differential effects of fluctuating pH but little benefit of CO2 enrichment. ICES Journal of Marine Science 76: 1860–1870. DOI: 10.1093/icesjms/fsz070.
  • Buchanan B.B. & Luan S. 2005. Redox regulation in the chloroplast thylakoid lumen: a new frontier in photosynthesis research. Journal of Experimental Botany 56: 1439–1447. DOI: 10.1093/jxb/eri158.
  • Buia M., Gambi M.C. & Dappiano M. 2003. I sistemi a fanerogame marine. Biologia Marina Mediterranea 10: 145–198.
  • Carmo-Silva E., Scales J.C., Madgwick P.J. & Parry M.A.J. 2015. Optimizing Rubisco and its regulation for greater resource use efficiency. Plant, Cell and Environment 38: 1817–1832. DOI: 10.1111/pce.12425.
  • Cigliano M., Gambi M.C., Rodolfo-Metalpa R., Patti F.P. & Hall-Spencer J.M. 2010. Effects of ocean acidification on invertebrate settlement at natural volcanic CO2 vents. Marine Biology 157: 2489–2502. DOI: 10.1007/s00227-010-1513-6.
  • Comeau S., Edmunds P.J., Spindel N.B. & Carpenter R.C. 2013. The responses of eight coral reef calcifiers to increasing partial pressure of CO2 do not exhibit a tipping point. Limnology and Oceanography 58: 388–398. DOI: 10.4319/lo.2013.58.1.0388.
  • Cornwall C.E., Comeau S. & McCulloch M.T. 2017a. Coralline algae elevate pH at the site of calcification under ocean acidification. Global Change Biology 23: 4245–4256. DOI: 10.1111/gcb.13673.
  • Cornwall C.E., Revill A.T., Hall-Spencer J.M., Milazzo M., Raven J.A. & Hurd C.L. 2017b. Inorganic carbon physiology underpins macroalgal responses to elevated CO2. Scientific Reports 7: Article 46297. DOI: 10.1038/srep46297.
  • Cornwall C.E. & Hurd C.L. 2020. Variability in the benefits of ocean acidification to photosynthetic rates of macroalgae without CO2- concentrating mechanisms. Marine and Freshwater Research 71: 275–280. DOI: 10.1071/MF19134.
  • Dall’Osto L., Bassi R. & Ruban A. 2014. Photoprotective mechanisms: carotenoids. In: Plastid biology (Ed. by S.M. Theg & F.-A. Wollman), pp 393–435. Springer, New York, New York, USA. DOI: 10.1007/978-1-4939-1136-3_15.
  • Doney S.C., Busch D.S., Cooley S.R. & Kroeker K.J. 2020. The impacts of ocean acidification on marine ecosystems and reliant human communities. Annual Review of Environment and Resources 45: 83–112. DOI: 10.1146/annurev-environ-012320-083019.
  • Duarte C.M., Hendriks I.E. Moore T.S., Olsen Y.S., Steckbauer A., Ramajo L., Carstensen J., Trotter J.A. & McCulloch M. 2013. Is ocean acidification an open-ocean syndrome? Understanding anthropogenic impacts on seawater pH. Estuaries and Coasts 36: 221–236. DOI: 10.1007/s12237-013-9594-3.
  • Fabricius K.E., De’ath G., Noonan S. & Uthicke S. 2014. Ecological effects of ocean acidification and habitat complexity on reef-associated macroinvertebrate communities. Proceedings of the Royal Society B 281: Article 20132479. DOI: 10.1098/rspb.2013.2479.
  • Figuerola B., Hancock A.M., Bax N., Cummings V.J., Downey R., Griffiths H.J., Smith J. & Stark J.S. 2021. A review and meta-analysis of potential impacts of ocean acidification on marine calcifiers from the Southern Ocean. Frontiers in Marine Science 8: Article 584445. DOI: 10.3389/fmars.2021.584445.
  • Foo A.A., Byrne M., Ricevuto E. & Gambi M.C. 2018. The carbon dioxide vents of Ischia, Italy, a natural system to assess impacts of ocean acidification on marine ecosystems: an overview of research and comparisons with other vent systems. Oceanography and Marine Biology: An Annual Review 56: 237–310.
  • Foo S.A. & Byrne M. 2021. Forecasting impacts of ocean acidification on marine communities: utilizing volcanic CO2 vents as natural laboratories. Global Change Biology 27: 1995–1997. DOI: 10.1111/gcb.15528.
  • Gao G., Liu Y., Li X., Feng Z. & Xu J. 2016. An ocean acidification acclimatised green tide alga is robust to changes of seawater carbon chemistry but vulnerable to light stress. PLOS One 11: Article e0169040. DOI: 10.1371/journal.pone.0169040.
  • Gao G., Beardall J., Bao M., Wang C., Ren W. & Xu J. 2018. Ocean acidification and nutrient limitation synergistically reduce growth and photosynthetic performances of a green tide alga Ulva linza. Biogeosciences 15: 3409–3420. DOI: 10.5194/bg-15-3409-2018.
  • Garrard S.L., Gambi M.C., Scipione M.B., Patti F.P., Lorenti M., Zupo V., Paterson D.M. & Buia M.C. 2014. Indirect effects may buffer negative responses of seagrass invertebrate communities to ocean acidification. Journal of Experimental Marine Biology and Ecology 461: 31–38. DOI: 10.1016/jembe.2014.07.011.
  • Genty B., Briantais J.-M. & Baker N.R. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA) — General Subjects 990: 87–92. DOI: 10.1016/S0304-4165(89)80016-9.
  • Giordano M., Beardall J. & Raven J.A. 2005. CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annual Review of Plant Biology 56: 99–131. DOI: 10.1146/annurev.arplant.56.032604.144052.
  • González-Delgado S. & Hernández J.C. 2018. The importance of natural acidified systems in the study of ocean acidification: what have we learned? In: Advances in marine biology, vol. 80 (Ed. by C. Sheppard), pp 57–99. Academic Press, London, UK. DOI: 10.1016/bs.amb.2018.08.001.
  • Gorelova O., Baulina O., Ismagulova T., Kokabi K., Lobakova E., Selyakh I., Semenova L., Chivkunova O., Karpova O., Scherbakov P. et al. 2019. Stress-induced changes in the ultrastructure of the photosynthetic apparatus of green microalgae. Protoplasma 256: 261–277. DOI: 10.1007/s00709-018-1294-1.
  • Guala I., Flagella M.M., Andreakis N., Procaccini G., Kooistra W.H.C.F. & Buia M.C. 2003. Aliens — algal introductions to European shores. Biogeographia – the Journal of Integrative Biogeography 24: 45–52. DOI: 10.21426/B6110143.
  • Guala I., Esposito A. & Buia M.C. 2006. Macroalgal assemblages in the Gulf of Naples: spatial variability in relation to anthropogenic disturbance. In: UNEP - MAP - RAC/SPA, 2006. Proceedings of the Second Mediterranean symposium on marine vegetation, Athens, 12–13 December 2003 (Ed. by RAC-SPA), pp 168–175. Simpact, Tunis, Tunisia.
  • Guiry M.D. & Guiry G.M. 2022. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway; searched on 21 March 2022.
  • Häder D.-P., Lebert M., Figueroa F.L., Jiménez C., Viñegla B. & Perez-Rodriguez E. 1998. Photoinhibition in Mediterranean macroalgae by solar radiation measured on site by PAM fluorescence. Aquatic Botany 61: 225–236. DOI: 10.1016/S0304-3770(98)00068-0.
  • Hall-Spencer J.M., Rodolfo-Metalpa R., Martin S., Ransome E., Fine M., Turner S.M., Rowley S.J., Tedesco D. & M.-c B. 2008. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454: 96–99. DOI: 10.1038/nature07051.
  • Hamel G. 1930. Chlorophycées des côtes françaises. Revue Algologie 5: 229–230.
  • Hejda M., Pyšek P. & Jarošík V. 2009. Impact of invasive plants on the species richness, diversity and composition of invaded communities. Journal of Ecology 97: 393–403. DOI: 10.1111/j.1365-2745.2009.01480.x.
  • Hofmann G.E., Smith J.E., Johnson K.S., Send U., Levin L.A., Micheli F., Paytan A., Price N.N., Peterson B., Takeshita Y. et al. 2011. High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLOS One 6: Article e28983. DOI: 10.1371/journal.pone.0028983.
  • Hofmann L., Heiden J., Bischof K. & Teichberg M. 2014. Nutrient availability affects the response of the calcifying chlorophyte Halimeda opuntia (L.) J.V. Lamouroux to low pH. Planta 239: 231–242. DOI: 10.1007/s00425-013-1982-1.
  • Hurd C.L., Beardall J., Comeau S., Cornwall C.E., Havenhand J.N., Munday P.L., Parker L.M., Raven J.H. & McGraw C.M. 2020. Ocean acidification as a multiple driver: how interactions between changing seawater carbonate parameters affect marine life. Marine and Freshwater Research 71: 263–274. DOI: 10.1071/MF19267.
  • IPCC. 2021. Summary for policymakers. In: Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change (Ed. by V. Masson-Delmotte, P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis et al.).
  • James R.K., Silva R., Van Tussenbroek B.I., Escudero-Castillo M., Mariño-Tapia I., Dijkstra H.A., Van Westen R.M., Pietrzak J.D., Candy A.S., Katsman C.A. et al. 2019. Maintaining tropical beaches with seagrass and algae: a promising alternative to engineering solutions. BioScience 69: 136–142. DOI: 10.1093/biosci/biy154.
  • Ji Y., Xu Z., Zou D. & Gao K. 2016. Ecophysiological responses of marine macroalgae to climate change factors. Journal of Applied Phycology 28: 2953–2967. DOI: 10.1007/s10811-016-0840-5.
  • Johnson V.R., Russell B.D., Fabricius K.E., Brownlee C. & Hall‐Spencer J.M. 2012. Temperate and tropical brown macroalgae thrive, despite decalcification, along natural CO2 gradients. Global Change Biology 18: 2792–2803. DOI: 10.1111/j.1365-2486.2012.02716.x.
  • Kamenos N.A., Perna G., Gambi M.C., Micheli F. & Kroeker K.J. 2016. Coralline algae in a naturally acidified ecosystem persist by maintaining control of skeletal mineralogy and size. Proceedings of the Royal Society B: Biological Sciences 283: Article 20161159. DOI: 10.1098/rspb.2016.1159.
  • Kang E.J., Lee S., Kang J., Moon H., Kim I.N. & Kim J.H. 2021. Performance of a potentially invasive species of ornamental seaweed Caulerpa sertularioides in acidifying and warming oceans. Journal of Marine Science and Engineering 9: Article 1368. DOI: 10.3390/jmse9121368.
  • Kevekordes K., Holland H., Haubner N., Jenkins S., Koss R., Roberts S., Raven J.A., Scrimgeour C.M., Shelly K., Stojkovic S. et al. 2006. Inorganic carbon acquisition by eight species of Caulerpa (Caulerpaceae, Chlorophyta). Phycologia 45: 442–449. DOI: 10.2216/05-55.1.
  • Klein J. & Verlaque M. 2008. The Caulerpa racemosa invasion: a critical review. Marine Pollution Bulletin 56: 205–225. DOI: 10.1016/j.marpolbul.2007.09.043.
  • Koch M., Bowes G., Ross C. & Zhang X.-H. 2013. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Global Change Biology 19: 103–132. DOI: 10.1111/j.1365-2486.2012.02791.x.
  • Kooten O. & Snel J. 1990. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynthesis Research 25: 147–150. DOI: 10.1007/BF00033156.
  • Kroeker K.J., Crim R.N. & Singh G.G. 2010. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecology Letters 13: 1419–1434. DOI: 10.1111/j.1461-0248.2010.01518.x.
  • Kroeker K.J., Micheli F., Gambi M.C. & Martz T.R. 2011. Divergent ecosystem responses within a benthic marine community to ocean acidification. Proceedings of the National Academy of Sciences of the USA 108: 14515–14520. DOI: 10.1073/pnas.1107789108.
  • Kroeker K.J., Gambi M.C. & Micheli F. 2013. Community dynamics and ecosystem simplification in a high-CO2 ocean. Proceedings of the National Academy of Sciences of the USA 110: 12721–12726. DOI: 10.1073/pnas.1216464110.
  • Kumar A., AbdElgawad H., Castellano I., Lorenti M., Delledonne M., Beemster G.T.S., Asard H., Buia M.C. & Palumbo A. 2017a. Physiological and biochemical analyses shed light on the response of Sargassum vulgare to ocean acidification at different time scales. Frontiers in Plant Science 8: Article 570. DOI: 10.3389/fpls.2017.00570.
  • Kumar A., Castellano I., Patti F.P., Delledonne M., AbdElgawad H., Beemster G.T.S., Asard H., Palumbo A. & Buia M.C. 2017b. Molecular response of Sargassum vulgare to acidification at volcanic CO2 vents: insights from de novo transcriptomic analysis. Molecular Ecology 26: 2276–2290. DOI: 10.1111/mec.14034.
  • Mannino A.M. & Balistreri P. 2019. Effects of Caulerpa cylindracea Sonder (Chlorophyta Caulerpaceae) on marine biodiversity. Biodiversity Journal 10: 383–388. DOI: 10.31396/Biodiv.Jour.2019.10.4.383.388.
  • Middelboe A. & Hansen P. 2007. High pH in shallow-water macroalgal habitats. Marine Ecology Progress Series 338: 107–117. DOI: 10.3354/meps338107.
  • Morgan-Kiss R.M., Priscu J.C., Pocock T., Gudynaite-Savitch L. & Huner N.P.A. 2006. Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiology and Molecular Biology Reviews 70: 222–252. DOI: 10.1128/MMBR.70.1.222-252.2006.
  • Moro I., Vecchia F.D., Rocca N.L., Rascio N. & Andreoli C. 2003. Ultrastructural and cytochemical study of Plocamium cartilagineum (Plocamiales, Rhodophyta) from Ross sea (Antarctica). New Zealand Journal of Botany 41: 359–371. DOI: 10.1080/0028825X.2003.9512854.
  • Muller P., Li X. & Niyogi K.K. 2001. Non-photochemical quenching. A response to excess light energy. Plant Physiology 125: 1558–1566. DOI: 10.1104/pp.125.4.1558.
  • Najdek M., Korlević M., Paliaga P., Markovski M., Ivančić I., Iveša L., Felja I. & Herndl G.J. 2020. Effects of the invasion of Caulerpa cylindracea in a Cymodocea nodosa meadow in the Northern Adriatic Sea. Frontiers in Marine Science 7: Article 602055. DOI: 10.3389/fmars.2020.602055.
  • Nakamura S. & Izumi M. 2018. Regulation of chlorophagy during photoinhibition and senescence: lessons from mitophagy. Plant and Cell Physiology 59: 1135–1143. DOI: 10.1093/pcp/pcy096.
  • Occhipinti-Ambrogi A. & Galil B. 2010. Marine alien species as an aspect of global change. Advances in Oceanography and Limnology 1: 199–218. DOI: 10.4081/aiol.2010.5300.
  • Peña V., Harvey B.P., Agostini S., Porzio L., Milazzo M., Horta P., Le Gall L. & Hall-Spencer J.M. 2021. Major loss of coralline algal diversity in response to ocean acidification. Global Change Biology 27: 4785–4798. DOI: 10.1111/gcb.15757.
  • Piazzi L., Meinesz A., Verlaque M., Akçali B., Antoli B., Argyrou M., Balata D., Ballesteros E., Calvo S., Cinelli F. et al. 2005. Invasion of Caulerpa racemosa var. cylindracea (Caulerpales, Chlorophyta) in the Mediterranean Sea: an assessment of the spread. Cryptogamie Algologie 26: 189–202.
  • Porzio L., Buia M.C. & Hall-Spencer J.M. 2011. Effects of ocean acidification on macroalgal communities. Journal of Experimental Marine Biology and Ecology 400: 278–287. DOI: 10.1016/j.jembe.2011.02.011.
  • Porzio L., Garrard S.L. & Buia M.C. 2013. The effect of ocean acidification on early algal colonization stages at natural CO2 vents. Marine Biology 160: 2247–2259. DOI: 10.1007/s00227-013-2251-3.
  • Porzio L., Buia M.C., Lorenti M., De Maio A. & Arena C. 2017. Physiological responses of a population of Sargassum vulgare (Phaeophyceae) to high pCO2/low pH: implications for its long-term distribution. The Science of the Total Environment 576: 917–925. DOI: 10.1016/j.scitotenv.2016.10.096.
  • Porzio L., Buia M.C., Lorenti M., Vitale E., Amitrano C. & Arena C. 2018. Ecophysiological response of Jania rubens (Corallinaceae) to ocean acidification. Rendiconti Lincei. Scienze Fisiche e Naturali 29: 543–546. DOI: 10.1007/s12210-018-0719-2.
  • Porzio L., Arena C., Lorenti M., De Maio A. & Buia M.C. 2020. Long-term response of Dictyota dichotoma var. intricata (C. Agardh) Greville (Phaeophyceae) to ocean acidification: insights from high pCO2 vents. Science of the Total Environment 731: Article 138896. DOI: 10.1016/j.scitotenv.2020.138896.
  • Price N., Hamilton S., Tootell J. & Smith J. 2011. Species-specific consequences of ocean acidification for the calcareous tropical green algae Halimeda. Marine Ecology Progress Series 440: 67–78. DOI: 10.3354/meps09309.
  • Ralph P. & Gademann R. 2005. Rapid light curves: a powerful tool to assess photosynthetic activity. Aquatic Botany 82: 222–237. DOI: 10.1016/j.aquabot.2005.02.006.
  • Raniello R., Lorenti M., Brunet C. & Buia M.C. 2004. Photosynthetic plasticity of an invasive variety of Caulerpa racemosa in a coastal Mediterranean area: light harvesting capacity and seasonal acclimation. Marine Ecology Progress Series 271: 113–120. DOI: 10.3354/meps271113.
  • Raniello R., Lorenti M., Brunet C. & Buia M.C. 2006. Photoacclimation of the invasive alga Caulerpa racemosa var. cylindracea to depth and daylight patterns and a putative new role for siphonaxanthin. Marine Ecology 27: 20–30. DOI: 10.1111/j.1439-0485.2006.00080.x.
  • Raniello R., Mollo E., Lorenti M., Gavagnin M. & Buia M.C. 2007. Phytotoxic activity of caulerpenyne from the Mediterranean invasive variety of Caulerpa racemosa: a potential allelochemical. Biological Invasions 9: 361–368. DOI: 10.1007/s10530-006-9044-2.
  • Raven J.A. & Hurd C.L. 2012. Ecophysiology of photosynthesis in macroalgae. Photosynthesis Research 113: 105–125. DOI: 10.1007/s11120-012-9768-z.
  • Raven J.A., Beardall J. & Giordano M. 2014. Energy costs of carbon dioxide concentrating mechanisms in aquatic organisms. Photosynthesis Research 121: 111–124. DOI: 10.1007/s11120-013-9962-7.
  • Ricevuto E., Kroeker K.J., Ferrigno F., Micheli F. & Gambi M.C. 2014. Spatio-temporal variability of polychaete colonization at volcanic CO2 vents (Italy) indicates high tolerance to ocean acidification. Marine Biology 161: 2909–2919. DOI: 10.1007/s00227-014-2555-y.
  • Roth-Schulze A.J., Thomas T., Steinberg P., Deveney M.R., Tanner J.E., Wiltshire K.H., Papantoniou S., Runcie J.W. & Gurgel C.F.D. 2018. The effects of warming and ocean acidification on growth, photosynthesis, and bacterial communities for the marine invasive macroalga Caulerpa taxifolia. Limnology and Oceanography 63: 459–471. DOI: 10.1002/lno.10739.
  • Ruitton S., Verlaque M. & Boudouresque C.F. 2005. Seasonal changes of the introduced Caulerpa racemosa var. cylindracea (Caulerpales, Chlorophyta) at the northwest limit of its Mediterranean range. Aquatic Botany 82: 55–70. DOI: 10.1016/j.aquabot.2005.02.008.
  • Russell B.D., Connell S.D., Uthicke S., Muehllehner N., Fabricius K.E. & Hall-Spencer J.M. 2013. Future seagrass beds: can increased productivity lead to increased carbon storage? Marine Pollution Bulletin 73: 463–469. DOI: 10.1016/j.marpolbul.2013.01.031.
  • Sangil C. & Juan A.P.-S. 2020. Spread of Caulerpa cylindracea impacts: the colonization of Atlantic intertidal communities. Regional Studies in Marine Science 34: Article 100989. DOI: 10.1016/j.rsma.2019.100989.
  • Schreiber U. 2004. Pulse-Amplitude-Modulation (PAM) fluorometry and saturation pulse method: an overview. In: Chlorophyll a fluorescense, a signature of photosynthesis (Ed. by G.C. Papageoriou & Govindjee), pp 279–319. [Advances in Photosynthesis and Respiration 19]. DOI: 10.1007/978-1-4020-3218-9_11.
  • Sinutok S., Hill R., Doblin M.A., Wuhrer R. & Ralph P.J. 2011. Warmer more acidic conditions cause decreased productivity and calcification in subtropical coral reef sediment-dwelling calcifiers. Limnology and Oceanography 56: 1200–1212. DOI: 10.4319/lo.2011.56.4.1200.
  • Solovchenko A. & Neverov K. 2017. Carotenogenic response in photosynthetic organisms: a colorful story. Photosynthesis Research 133: 31–48. DOI: 10.1007/s11120-017-0358-y.
  • Solovchenko A., Baulina O., Ptushenko O. & Gorelova O. 2019. Ultrastructural patterns of photoacclimation and photodamage to photosynthetic algae cell under environmental stress. Physiologia Plantarum 166: 251–263. DOI: 10.1111/ppl.12912.
  • Sun J., Bao M., Xu T., Li F., Wu H., Li X. & Xu J. 2021. Elevated CO2 influences competition for growth, photosynthetic performance and biochemical composition in Neopyropia yezoensis and Ulva prolifera. Algal Research 56: Article 102313. DOI: 10.1016/j.algal.2021.102313.
  • Tedesco D. 1996. Chemical and isotopic investigation of fumarolic gases from Ischia Island (Southern Italy): evidence of magmatic and crustal contribution. Journal of Vulcanology and Geothermal Research 74: 233–242. DOI: 10.1016/S0377-0273(96)00030-3.
  • Teixidó N., Gambi M.C., Parravacini V., Kroeker K., Micheli F., Villèger S. & Ballesteros E. 2018. Functional biodiversity loss along natural CO2 gradients. Nature Communications 9: Article 5149. DOI: 10.1038/s41467-018-07592-1.
  • Timmers M.A., Jury C.P., Vicente J., Bahr K.D., Webb M.K. & Toonen R.J. 2021. Biodiversity of coral reef cryptobiota shuffles but does not decline under the combined stressors of ocean warming and acidification. Proceedings of the National Academy of Sciences of the USA 118: Article e2103275118. DOI: 10.1073/pnas.2103275118.
  • Tracewell C., Vrettos J., Bautista J., Frank H. & Brudvig G. 2001. Carotenoid photooxidation in photosystem II. Archives of Biochemistry and Biophysics 385: 61–69. DOI: 10.1006/abbi.2000.2150.
  • Tribollet A., Grange J.S., Parra H., Rodolfo‐Metalpa R. & Carreiro‐Silva M. 2018. Limited carbonate dissolution by boring microflora at two volcanically acidified temperate sites: ischia (Italy, Mediterranean Sea) and Faial (Azores, NE Atlantic Ocean). Global Biogeochemical Cycles 32: 78–91. DOI: 10.1002/2016GB005575.
  • van der Loos L.M., Schmid M., Leal P.P., McGraw C.M., Britton D., Revill A.T., Virtue P., Nichols P.D. & Hurd C.L. 2019. Responses of macroalgae to CO2 enrichment cannot be inferred solely from their inorganic carbon uptake strategy. Ecology and Evolution 9: 125–140. DOI: 10.1002/ece3.4679.
  • Verlaque M., Boudouresque C.F., Meinesz A. & Gravez V. 2000. The Caulerpa racemosa complex (Caulerpales, Ulvophyceae) in the Mediterranean Sea. Botanica Marina 43: 49–68. DOI: 10.1515/BOT.2000.005.
  • Vogel N., Fabricius K.E., Strahl J., Noonan S.H.C., Wild C. & Uthicke S. 2015. Calcareous green alga Halimeda tolerates ocean acidification conditions at tropical carbon dioxide seeps. Limnology and Oceanography 60: 263–275. DOI: 10.1002/lno.10021.
  • Webb W., Newton M. & Starr D. 1974. Carbon dioxide exchange of Alnus rubra. Oecologia 17: 281–291. DOI: 10.1007/BF00345747.
  • Wellburn A.R. 1994. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology 144: 307–313. DOI: 10.1016/S0176-1617(11)81192-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.