151
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Neocylindrospermum variakineticum gen. & sp. nov. (Nostocales, Cyanobacteria), a novel genus separated from Cylindrospermum using a polyphasic method

ORCID Icon, ORCID Icon &
Pages 653-668 | Received 24 Mar 2022, Accepted 27 Sep 2022, Published online: 26 Oct 2022

REFERENCES

  • Alvarenga D.O., Andreote A.P.D., Branco L.H.Z. & Fiore M.F. 2017. Kryptousia macronema gen. nov. and Kryptousia microlepis sp. nov., nostocalean cyanobacteria isolated from phyllospheres. International Journal of Systematic and Evolutionary Microbiology 67: 3301–3309. DOI: 10.1099/ijsem.0.002109.
  • Alvarenga D.O., Andreote A.P.D., Branco L.H.Z., Delbaje E., Cruz R.B., de Mello Varani A. & Fiore M.F. 2021. Amazonocrinis nigriterrae gen. nov., sp. nov., Atlanticothrix silvestris gen. nov., sp. nov. and Dendronalium phyllosphericum gen. nov., sp. nov., nostocacean cyanobacteria from Brazilian environments. International Journal of Systematic and Evolutionary Microbiology 71: Article 004811. DOI: 10.1099/ijsem.0.004811.
  • Andersen R.A. 2005. Algal culturing techniques. Elsevier Academic Press, Burlington, Massachusetts, United States. 578 pp.
  • Bagchi S.N., Dubey N. & Singh P. 2017. Phylogenetically distant clade of Nostoc-like taxa with the description of Aliinostoc gen. nov. and Aliinostoc morphoplasticum sp. nov. International Journal of Systematic and Evolutionary Microbiology 67: 3329–3338. DOI: 10.1099/ijsem.0.002112.
  • Ben-Porath J. & Zehr J.P. 1994. Detection and characterization of cyanobacterial nifH genes. Applied and Environmental Microbiology 60: 880–887. DOI: 10.1128/aem.60.3.880-887.1994.
  • Berthold D.E., Lefler F.W. & Laughinghouse H.D., IV. 2022. Recognizing novel cyanobacteria diversity in marine benthic mats, with the description of Sirenicapillariaceae fam. nov., two new genera, Sirenicapillaria gen. nov. and Tigrinifilum gen. nov., and seven new species. Phycologia 45: 1363–1373.
  • Bornet E. & Flahault C. 1886. Revisions des Nostocacées hétérocystées. Annales des Sciences Naturelles Botanique 7: 323–381.
  • Boyer S.L., Johansen J.R., Flechtner V.R. & Howard G.L. 2002. Phylogeny and genetic variance in terrestrial Microcoleus (Cyanophyceae) species based on sequence analysis of the 16S rRNA gene and associated 16S-23S ITS region. Journal of Phycology 38: 1222–1235. DOI: 10.1046/j.1529-8817.2002.01168.x.
  • Cai F. & Li R.H. 2020. Purpureonostoc, a new name for a recently described genus of Nostoc-like cyanobacteria. Fottea 20: 111. DOI: 10.5507/fot.2020.007.
  • Cai F., Li X., Geng R., Peng X. & Li R. 2019. Phylogenetically distant clade of Nostoc-like taxa with the description of Minunostoc gen. nov. and Minunostoc cylindricum sp. nov. Fottea 19: 13–24. DOI: 10.5507/fot.2018.013.
  • Caires T.A., Lyra G.M., Hentschke G.S., Silva A.M.S., Araújo V.L., Sant’Anna C.L. & Nunes J.M.C. 2018. Polyphasic delimitation of filamentous marine genus, Capillus gen. nov. (Cyanobacteria, Oscillatoriaceae) with the description of two Brazilian species. Algae 33: 291–304. DOI: 10.4490/algae.2018.33.11.25.
  • Casamatta D.A., Villanueva C.D., Garvey A.D., Stocks H.S., Vaccarino M., Dvorak P., Hasler P. & Johansen J.R. 2020. Reptodigitus chapmanii (Nostocales, Hapalosiphonaceae) gen. nov.: a unique nostocalean (Cyanobacteria) genus based on a polyphasic approach. Journal of Phycology 56: 425–436. DOI: 10.1111/jpy.12954.
  • Davydov D.A., Shalygin S. & Vilnet A. 2020. New cyanobacterium Nodosilinea svalbardensis sp. nov. (Prochlorotrichaceae, Synechococcales) isolated from alluvium in Mimer river valley of the Svalbard archipelago. Phytotaxa 442: 61–79. DOI: 10.11646/phytotaxa.442.2.2.
  • Dvořák P., Jahodářová E., Hašler P., Gusev E. & Poulíčková A. 2015. A new tropical cyanobacterium Pinocchia polymorpha gen. et sp. nov. derived from the genus Pseudanabaena. Fottea 15: 113–120. DOI: 10.5507/fot.2015.010.
  • Dvořák P., Hašler P., Casamatta D.A. & Poulíćková A. 2021. Underestimated cyanobacterial diversity: trends and perspectives of research in tropical environments. Fottea 21: 110–127. DOI: 10.5507/fot.2021.009.
  • Edgar R.C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792–1797. DOI: 10.1093/nar/gkh340.
  • Engene N., Rottacker E.C., Kaštovský J., Byrum T., Choi H., Ellisman M.H., Komárek J. & Gerwick W.H. 2012. Moorea producens gen. nov., sp. nov. and Moorea bouillonii comb. nov., tropical marine cyanobacteria rich in bioactive secondary metabolites. International Journal of Systematic and Evolutionary Microbiology 62: 1171–1178. DOI: 10.1099/ijs.0.033761-0.
  • Engene N., Tronholm A. & Paul V.J. 2018. Uncovering cryptic diversity of Lyngbya: the new tropical marine cyanobacterial genus Dapis (Oscillatoriales). Journal of Phycology 54: 435–446. DOI: 10.1111/jpy.12752.
  • Fiore M.F., Sant’Anna C.L., Azevedo M.T.D.P., Komárek J., Kaštovský J., Sulek J. & Lorenzi A.S. 2007. The cyanobacterial genus Brasilonema, gen. nov., a molecular and phenotypic evaluation. Journal of Phycology 43: 789–798. DOI: 10.1111/j.1529-8817.2007.00376.x.
  • Flechtner V.R., Boyer S.L., Johansen J.R. & DeNoble M.L. 2002. Spirirestic rafaelensis gen. et sp. nov. (Cyanophyceae), a new cyanobacterial genus from arid soils. Nova Hedwigia 74: 1–24. DOI: 10.1127/0029-5035/2002/0074-0001.
  • Geitler L. 1932. Cyanophyceae. In: Kryptogamenflora von Deutschland, Osterreich und der Schweiz (Ed. by L. Rabenhorst). Akademische Verlagsgesel-schaft m.b.H, Leipzig, Germany. pp. 1196.
  • Geitler L. 1942. Schizophyta: klasse Schizophyceae. In: Die natürlichen Pflanzenfamiliennebst ihren Gattungen und wichtigeren Arten insbesondere den Nutzpflanzen (Ed. by A. Engler, K. Prantl & H. Harns). Engelmann Publication, Leipzig, Germany. pp. 232.
  • Genuário F.O., Corrêa D.M., Komárek J. & Fiore M.F. 2013. Characterization of freshwater benthic biofilm-forming Hydrocoryne (Cyanobacteria) isolates from Antarctica. Journal of Phycology 49: 1142–1153. DOI: 10.1111/jpy.12124.
  • Genuário D.B., Vaz M.G.M.V., Hentschke G.S., Sanťanna C.L. & Fiore M.F. 2015. Halotia gen. nov., a phylogenetically and physiologically coherent cyanobacterial genus isolated from marine coastal environments. International Journal of Systematic and Evolutionary Microbiology 65: 663–675. DOI: 10.1099/ijs.0.070078-0.
  • Genuário D.B., Sant’Anna C.L. & Melo I.S. 2018. Elucidating the Cronbergia (cyanobacteria) dilemma with the description of Cronbergia amazonensis sp. nov. isolated from Solimões river (Amazonia, Brazil). Algal Research 29: 233–241. DOI: 10.1016/j.algal.2017.11.034.
  • González-Resendiz L., Johansen J.R., León-Tejera H., Sánchez L., Segal-Kischinevzky C., Escobar-Sánchez V. & Morales M. 2019. A bridge too far in naming species: a total evidence approach does not support recognition of four species in Desertifilum (Cyanobacteria). Journal of Phycology 55: 898–911. DOI: 10.1111/jpy.12867.
  • Guiry M.D. & Guiry G.M. 2022. AlgaeBase. World-wide electronic publication, National University of Ireland, Ireland, Galway. http://www.AlgaeBase.org; searched on 13 February 2022.
  • Hašler P., Dvřák P. & Poulíčková A. 2014. A new genus of filamentous epipelic cyanobacteria, Johansenia. Preslia 86: 81–94.
  • Hauerová R., Hauer T., Kaštovský J., Komárek J., Lepšová-Skácelová O. & Mareš J. 2021. Tenebriella gen. nov. – the dark twin of Oscillatoria. Molecular Phylogenetics and Evolution 165: Article 107293. DOI: 10.1016/j.ympev.2021.107293.
  • Hentschke G.S., Johansen J.R., Pietrasiak N., Fiore M.F., Rigonato J., Sant’Anna C.L. & Komárek J. 2016. Phylogenetic placement of Dapisostemon gen. nov. and Streptostemon, two tropical heterocytous genera (Cyanobacteria). Phytotaxa 245: 129–143. DOI: 10.11646/phytotaxa.245.2.4.
  • Hentschke G.S., Johansen J.R., Pietrasiak N., Rigonato J., Fiore M.F. & Sant’Anna C.L. 2017. Komarekiella atlantica gen. et sp. nov. (Nostocaceae, Cyanobacteria): a new subaerial taxon from the Atlantic Rainforest and Kauai, Hawaii. Fottea 17: 178–190. DOI: 10.5507/fot.2017.002.
  • Hrouzek P., Lukešová A., Mareš J. & Ventura S. 2013. Description of the cyanobacterial genus Desmonostoc gen. nov. including D. muscorum comb. nov. as a distinct, phylogenetically coherent taxon related to the genus Nostoc. Fottea 13: 201–213. DOI: 10.5507/fot.2013.016.
  • Iteman I., Rippka R., de Marsac N.T. & Herdman M. 2000. Comparison of conserved structural and regulatory domains within divergent 16S rRNA–23S rRNA spacer sequences of cyanobacteria. Microbiology 146: 1275–1286. DOI: 10.1099/00221287-146-6-1275.
  • Johansen J.R. & Casamatta D.A. 2005. Recognizing cyanobacterial diversity through adoption of a new species paradigm. Algological Studies 117: 71–93.
  • Johansen J.R., Bohunická M., Lukešová A., Hrčková K., Vaccarino M.A. & Chesarino N.M. 2014. Morphological and molecular characterization within 26 strains of the genus Cylindrospermum (Nostocaceae, Cyanobacteria), with descriptions of three new species. Journal of Phycology 50: 187–202. DOI: 10.1111/jpy.12150.
  • Johansen J.R., Mareš J., Pietrasiak N., Bohunická M., Zima J., Jr Štenclová L. & Hauer T. 2017. Highly divergent 16S rRNA sequences in ribosomal operons of Scytonema hyalinum (Cyanobacteria). PLOS One 12: Article e0186393. DOI: 10.1371/journal.pone.0186393.
  • Kaštovský J., Gomez E.B., Hladil J. & Johansen J.R. 2014. Cyanocohniella calida gen. et sp. nov. (Cyanobacteria: aphanizomenonaceae) a new cyanobacterium from the thermal springs from Karlovy Vary, Czech Republic. Phytotaxa 181: 279–292. DOI: 10.11646/phytotaxa.181.5.3.
  • Kim M., Oh H.S., Park S.C. & Chun J. 2014. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. The International Journal of Systematic and Evolutionary Microbiology 64: 346–351. DOI: 10.1099/ijs.0.059774-0.
  • Komárek J. 2006. Cyanobacterial taxonomy current problems and prospects for the integration of traditional and molecular approaches. Algae 21: 249–375. DOI: 10.4490/ALGAE.2006.21.4.349.
  • Komárek J. 2013. Cyanoprokaryota. III. Heterocytous genera. In. Süßwasserflora von Mitteleuropa, vol. 19 (3) (Ed. by B. Büdel, G. Gärtner, L. Krienitz & M. Schagerl). Spektrum Akademischer Verlag, Heidelberg, Germany. pp.1130.
  • Komárek J. 2016. A polyphasic approach for the taxonomy of cyanobacteria: principles and applications. European Journal of Phycology 51: 346–353. DOI: 10.1080/09670262.2016.1163738.
  • Komárek J. 2018. Several problems of the polyphasic approach in the modern cyanobacterial system. Hydrobiologia 811: 7–17. DOI: 10.1007/s10750-017-3379-9.
  • Komárek J. 2020. Quo vadis, taxonomy of cyanobacteria (2019). Fottea 20: 104–110. DOI: 10.5507/fot.2019.020.
  • Komárek J. & Mareš J. 2012. An update to modern taxonomy (2011) of freshwater planktic heterocytous cyanobacteria. Hydrobiologia 698: 327–351. DOI: 10.1007/s10750-012-1027-y.
  • Komárek J., Zapomĕlová E. & Hindák F. 2010. Cronbergia gen. nov., a new cyanobacterial genus (Cyanophyta) with a special strategy of heterocyte formation. Cryptogamie, Algologie 31: 321–341.
  • Komárek J., Kaštovský J., Mareš J. & Johansen J.R. 2014. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 86: 295–335.
  • Komárek J., Komárková J., Ventura S., Kozlíková-Zapomělová E. & Rejmánková E. 2017. Taxonomic evaluation of cyanobacterial microflora from alkaline marshes of northern Belize. 3. Diversity of heterocytous genera. Nova Hedwigia 105: 445–486. DOI: 10.1127/nova_hedwigia/2017/0425.
  • Kumar S., Stecher G., Li M., Knyaz C. & Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35: 1547–1549. DOI: 10.1093/molbev/msy096.
  • Mai T., Johansen J.R., Pietrasiak N.B.M. & Martin M.P. 2018. Revision of the Synechococcales (Cyanobacteria) through recognition of four families including Oculatellaceae fam. nov. and Trichocoleaceae fam. nov. and six new genera containing 14 species. Phytotaxa 365: 1–59. DOI: 10.11646/phytotaxa.365.1.1.
  • Mareš J., Johansen J.R., Hauer T., Zima J., Jr., Ventura S., Cuzman O., Tiribilli B. & Kaštovský J. 2019. Taxonomic resolution of the genus Cyanothece (Chroococcales, Cyanobacteria), with a treatment on Gloeothece and three new genera, Crocosphaera, Rippkaea, and Zehria. Journal of Phycology 55: 578–610. DOI: 10.1111/jpy.12853.
  • Mathews Lab. 2018. RNA structure, version 6.0.1. https://rna.urmc.rochester.edu/RNAstructure.html; searched on March 2018.
  • McGregor G.B. 2018. Freshwater cyanobacteria from North-Eastern Australia: 3. Nostocales. Phytotaxa 133: 1–166. DOI: 10.11646/phytotaxa.133.1.1.
  • McGregor G.B. & Sendall B.C. 2015. Phylogeny and toxicology of Lyngbya wollei (Cyanobacteria, Oscillatoriales) from North-Eastern Australia, with a description of Microseira gen. nov. Journal of Phycology 51: 109–119. DOI: 10.1111/jpy.12256.
  • Minh B.Q., Nguyen M.A.T. & von Haeseler A. 2013. Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution 30: 1188–1195. DOI: 10.1093/molbev/mst024.
  • Nguyen L.T., Schmidt H.A., Von Haeseler A. & Minh B.Q. 2015. IQ–TREE: a fast and effective stochastic algorithm for estimating maximum–likelihood phylogenies. Molecular Biology and Evolution 32: 268–274. DOI: 10.1093/molbev/msu300.
  • Nowruzi B. & Shalygin S. 2021. Multiple phylogenies reveal a true taxonomic position of Dulcicalothrix alborzica sp. nov. (Nostocales, Cyanobacteria). Fottea 21: 235–246. DOI: 10.5507/fot.2021.008.
  • Nylander J.A.A. 2004. MrModeltest v2. Program distributed by author. Evolutionary Biology Centre, Uppsala University.
  • Osorio-Santos K., Pietrasiak N., Bohunická M., Miscoe L.H., Kováčik L., Martin M.P. & Johansen J.H. 2014. Seven new species of Oculatella (Pseudanabaenales, Cyanobacteria): taxonomically recognizing cryptic diversification. European Journal of Phycology 49: 450–470. DOI: 10.1080/09670262.2014.976843.
  • Pecundo M.H., Cai F., Chang A.C.G., Ren H., Li N., Li R. & Chen T. 2021. Polyphasic approach identifies two new species of Desmonostoc (Nostocales, Cyanobaceria) in the coralloid roots of Cycas fairylakea (Cycadales). Phycologia 60: 653–668. DOI: 10.1080/00318884.2021.1987697.
  • Rajaniemi P., Hrouzek P., Kaštovská K., Willame R., Rantala A., Hoffmann L., Komárek J. & Sivonen K. 2005. Phylogenetic and morphological evaluation of the genera Anabaena, Aphanizomenon, Trichormus and Nostoc (Nostocales, Cyanobacteria). International Journal of Systematic and Evolutionary Microbiology 55: 11–26. DOI: 10.1099/ijs.0.63276-0.
  • Rambaut A., Drummond A., Xie D., Baete G. & Suchard M.A. 2018. Posterior summarization in Bayesian phylogenetic using Tracer 1.7. Systematic Biology 67: 901–904. DOI: 10.1093/sysbio/syy032.
  • Rasouli-Dogaheh S., Komárek J., Chatchawan T. & Hauer T. 2022. Thainema gen. nov. (Leptolyngbyaceae, Synechococcales): a new genus of simple trichal cyanobacteria isolated from a solar saltern environment in Thailand. PLOS One 17: Article e0261682. DOI: 10.1371/journal.pone.0261682.
  • Řeháková K., Johansen J.R., Casamatta D.A., Xuesong L. & Vincent J. 2007. Morphological and molecular characterization of selected desert soil cyanobacteria: three species new to science including Mojavia pulchra gen. et sp. nov. Phycologia 46: 481–502. DOI: 10.2216/06-92.1.
  • Rigonato J., Alvarenga D.O. & Fiore M.F. 2017. Tropical Cyanobacteria and their biotechnological applications. In: Diversity and benefits of microorganisms from the Tropics (Ed. by J. de Azevedo & M. Quecine), pp 139–167. Springer, Basel, Switzerland.
  • Roldán M., Ramírez M., Del Campo J., Hernández-Mariné M. & Komárek J. 2013. Chalicogloea cavernicola gen. nov., sp. nov. (Chroococcales, Cyanobacteria), from low-light aerophytic environments: combined molecular, phenotypic and ecological criteria. International Journal of Systematic and Evolutionary Microbiology 63: 2326–2333. DOI: 10.1099/ijs.0.045468-0.
  • Ronquist F., Teslenko M., van der Mark P., Ayres D.L., Darling A., Höhna S., Larget B., Liu L., Suchard M.A. & Huelsenbeck J.P. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. DOI: 10.1093/sysbio/sys029.
  • Sant’Anna C.L., Gama W.A., Rigonato J., Correa G., Mesquita M.C.B. & Marinho M.M. 2019. Phylogenetic connection among close genera of Aphanizomenonaceae (Cyanobacteria): Amphiheterocytum gen. nov., Cylindrospermopsis and Sphaerospermopsis. Algal Research 37: 205–214. DOI: 10.1016/j.algal.2018.11.026.
  • Saraf A., Dawda H.G., Suradkar A., Behere I., Kotulkar M., Shaikh Z.M., Kumat A., Batule P., Mishra D. & Singh P. 2018. Description of two new species of Aliinostoc and one new species of Desmonostoc from India based on the polyphasic approach and reclassification of Nostoc punensis to Desmonostoc punense comb. nov. FEMS Microbiology Letters 365: Article fny272. DOI: 10.1093/femsle/fny272.
  • Saraf A.G., Dawda H.G. & Singh P. 2019. Desikacharya gen. nov., a phylogenetically distinct genus of Cyanobacteria along with the description of two new species, Desikacharya nostocoides sp. nov. and Desikacharya soli sp. nov., and reclassification of Nostoc thermotolerans to Desikacharya thermotolerans comb. nov. International Journal of Systematic and Evolutionary Microbiology 69: 307–315. DOI: 10.1099/ijsem.0.003093.
  • Sciuto K. & Moro I. 2016. Detection of the new cosmopolitan genus Thermoleptolyngbya (Cyanobacteria, Leptolyngbyaceae) using the 16S rRNA gene and 16S–23S ITS region. Molecular Phylogenetics and Evolution 105: 15–35. DOI: 10.1016/j.ympev.2016.08.010.
  • Sendall B.C. & McGregor G.B. 2018. Cryptic diversity within the Scytonema complex: characterization of the paralytic shellfish toxin producer Heterosyctonema crispum, and the establishment of the family Heteroscytonemataceae (Cyanobacteria/Nostocales). Harmful Algae 80: 158–170. DOI: 10.1016/j.hal.2018.11.002.
  • Seo P. & Yokota A. 2003. The phylogenetic relationships of cyanobacteria inferred from 16S rRNA, gyrB, rpoC1 and rpoD1 gene sequences. The Journal of General and Applied Microbiology 49: 191–203. DOI: 10.2323/jgam.49.191.
  • Shalygin S., Shalygina R., Johansen J.R., Pietrasiak N., Gómez E.B., Bohunická M., Mareš J. & Sheil C.A. 2017. Cyanomargarita gen. nov. (Nostocales, Cyanobacteria): convergent evolution resulting in a cryptic genus. Journal of Phycology 53: 762–777. DOI: 10.1111/jpy.12542.
  • Soares F., Ramos V., Trovão J., Cardoso S.M., Tiago I. & Portugal A. 2020. Parakomarekiella sesnandensis gen. et sp. nov. (Nostocales, Cyanobacteria) isolated from the Old Cathedral of Coimbra, Portugal (UNESCO World Heritage Site). European Journal of Phycology 56: 301–315. DOI: 10.1080/09670262.2020.1817568.
  • Stackebrandt E. & Ebers J. 2006. Taxonomic parameters revisited: tarnished gold standards. Microbiology Today 33: 152–155.
  • Swingley W., Chen M., Cheung P., Conrad A., Dejesa L., Hao J., Honchak B.M., Karbach L.E., Kurdoglu A., Lahiri S. et al. 2008. Niche adaptation and genome expansion in the chlorophyll d -producing cyanobacterium Acaryochloris marina. Proceedings of the National Academy of Sciences of the USA 105: 2005–2010. DOI: 10.1073/pnas.0709772105.
  • Taton A., Grubisic S., Brambilla E., Wit R. & Wilmotte A. 2003. Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo dry valleys, Antarctica): a morphological and molecular approach. Applied and Environmental Microbiology 69: 5157–5169. DOI: 10.1128/AEM.69.9.5157-5169.2003.
  • Tawong W., Pongcharoen P. & Nishimura T. 2022. Geosmin-producing Scytonema foetidum sp. nov. (Scytonemataceae, Cyanobacteria): morphology and molecular phylogeny. Fottea 22: 78–92. DOI: 10.5507/fot.2021.017.
  • Wang Y., Jia N., Geng R., Yu G. & Li R. 2021. Phylogenetic insights into Chroococcus-like taxa (Chroococcales, Cyanobacteria), describing Cryptochroococcus tibeticus gen. nov. sp. nov. and Limnococcus fonticola sp. nov. from Qinghai-Tibet plateau. Journal of Phycology 57: 1739–1748. DOI: 10.1111/jpy.13205.
  • Watanabe T. & Horiike T. 2021. The evolution of molybdenum dependent nitrogenase in cyanobacteria. Biology 10: Article 329. DOI: 10.3390/biology10040329.
  • West W. & West G.S. 1902. A contribution to the fresh water Algae of Ceylon. Transactions of the Linnean Society of London, Botany 6: 123–215. DOI: 10.1111/j.1095-8339.1902.tb00276.x.
  • Wilde S.B., Johansen J.R., Wilde H.D., Jiang P., Bartelme B.A. & Haynie R.S. 2014. Aetokthonos hydrillicola gen. et. sp. nov.: epiphytic cyanobacteria on invasive aquatic plants implicated in avian vacuolar myelinopathy. Phytotaxa 181: 243–260. DOI: 10.11646/phytotaxa.181.5.1.
  • Yang Q.-S., Dong J.-D., Ahmad M., Ling J., Zhou W.-G., Tan Y.-H., Zhang Y.-Z., Shen -D.-D. & Zhang -Y.-Y. 2019. Analysis of nifH DNA and RNA reveals a disproportionate contribution to nitrogenase activities by rare plankton-associated diazotrophs. BMC Microbiology 19: Article 188. DOI: 10.1186/s12866-019-1565-9.
  • Yarza P., Yilmaz P., Pruesse E., Glöckner F.O., Ludwig W., Schleifer K.-H., Whitman W.B., Euzéby J., Rudolf A. & Rosselló-Móra R. 2014. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nature Reviews Microbiology 12: 635–645. DOI: 10.1038/nrmicro3330.
  • Zapomĕlová E., Jezberová J., Hrouzek P., Hisem D., Řeháková K. & Komárková J. 2009. Polyphasic characterization of three strains of Anabaena reniformis and Aphanizomenon aphanizomenoides (Cyanobacteria) and their reclassification to Sphaerospermum gen. nov. (incl. Anabaena kisseleviana). Journal of Phycology 45: 1363–1375. DOI: 10.1111/j.1529-8817.2009.00758.x.
  • Zhou W.-G., Ding D.-W., Yang Q.-S., Ahmad M., Zhang Y.-Z., Lin X.-C., Zhang -Y.-Y., Ling J. & Dong J.-D. 2018. Marileptolyngbya sina gen. nov., sp. nov, and Salileptolyngbya diazotrophicum gen. nov., sp. nov. (Synechococcales, Cyanobacteria), species of cyanobacteria isolated from a marine ecosystem. Phytotaxa 383: 75–92. DOI: 10.11646/phytotaxa.383.1.4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.