97
Views
0
CrossRef citations to date
0
Altmetric
Research Note

Light irradiance modifies the fatty acid composition of Amphidinium carterae (Dinophyceae)

ORCID Icon & ORCID Icon
Pages 525-531 | Received 08 Nov 2022, Accepted 02 Aug 2023, Published online: 18 Oct 2023

REFERENCES

  • Adarme-Vega T.C., Thomas-Hall S.R. & Schenk P.M. 2014. Towards sustainable sources for omega-3 fatty acids production. Current Opinion in Biotechnology 26: 14–18. DOI: 10.1016/j.copbio.2013.08.003.
  • Almazán-Becerril A., Aké-Castillo J.A., Garcia-Mendoza E., Sánchez-Bravo Y.A., Escobar-Morales S. & Valadez-Cruz F. 2016. Catálogo de microalgas – Bahía de Todos Santos de Baja California. Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California, Mexico. 132 pp.
  • Asgharpour M., Rodgers B. & Hestekin J.A. 2015. Eicosapentaenoic acid from Porphyridium cruentum: increasing growth and productivity of microalgae for pharmaceutical products. Energies 8: 10487–10503. DOI: 10.3390/en80910487.
  • Assunção J., Guedes A.C. & Malcata F.X. 2017. Biotechnological and pharmacological applications of biotoxins and other bioactive molecules from dinoflagellates. Marine Drugs 15: Article 393. DOI: 10.3390/md15120393.
  • Bianco C.M., Stewart J.J., Miller K.R., Fitzgerald C. & Coyne K.J. 2016. Light intensity impacts the production of biofuel intermediates in Heteresigma akashiwo growing on stimulated flue gas containing carbon dioxide and nitric oxide. Bioresource Technology 219: 246–251. DOI: 10.1016/j.biortech.2016.07.119.
  • Blasio M. & Balzano S. 2021. Fatty acids derivatives from eukaryotic microalgae, pathways and potential applications. Frontiers in Microbiology 12: Article 718933. DOI: 10.3389/fmicb.2021.718933.
  • Casey A.C. 1969. Separation of neutral lipids of shark liver by “dry-column” chromatography. Journal of Lipid Research 10: 456–459.
  • Folch J., Lees M. & Sloane Stanley G.H. 1957. A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry 226: 497–509. DOI: 10.1016/S0021-9258(18)64849-5.
  • Fuentes-Grünewald C., Garcés E., Alacid E., Rossi S. & Camp J. 2013. Biomass and lipid production of dinoflagellates and raphidophytes in indoor and outdoor photobioreactors. Marine Biotechnology 15: 37–47. DOI: 10.1007/s10126-012-9450-7.
  • Fuentes-Grünewald C., Bayliss C., Fonlut F. & Chapuli E. 2016. Long-term dinoflagellate culture performance in a commercial photobioreactor: Amphidinium carterae case. Bioresource Technology 218: 533–540. DOI: 10.1016/j.biortech.2016.06.128.
  • Guihéneuf F. & Stengel D.B. 2013. LC-PUFA-enriched oil production by microalgae: accumulation of lipid and triacylglycerols containing n-3 LC-PUFA is triggered by nitrogen limitation and inorganic carbon availability in the marine haptophyte Pavlova lutheri. Marine Drugs 11: 4246–4266. DOI: 10.3390/md11114246.
  • Guihéneuf F., Mimouni V., Ulmann L. & Tremblin G. 2009. Combined effects of irradiance level and carbon source on fatty acid and lipid class composition in the microalga Pavlova lutheri commonly used in mariculture. Journal of Experimental Marine Biology and Ecology 369: 136–143. DOI: 10.1016/j.jembe.2008.11.009.
  • Guillard R.R.L. & Ryther J.H. 1962. Studies on marine planktonic diatoms I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Canadian Journal of Microbiology 8: 229–239. DOI: 10.1139/m62-029.
  • Hu Q., Sommerfeld M., Jarvis E., Ghirardi M., Posewitz M., Seibert M. & Darzins A. 2008. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The Plant Journal 54: 621–639. https://doi.org/10.1111/j.1365-313X.2008.03492.x.
  • Hyun B., Ju S.-J., Ko A.-R., Choi K.-H., Jung S.W., Jang P.-G., Jang M.-C., Moon C.H. & Shin K. 2016. Thermal effects on the growth and fatty acid composition of four harmful algal bloom species: possible implications for ichthyotoxicity. Ocean Science Journal 51: 333–342. DOI: 10.1007/s12601-016-0029-5.
  • Ismael A.A.H., Halim Y. & Khalil A.G. 1999. Optimum growth conditions for Amphidinium carterae Hulburt from eutrophic waters in Alexandria (Egypt) and its toxicity to the brine shrimp Artemia salina. Grana 38: 179–185. DOI: 10.1080/00173139908559226.
  • Jónasdóttir S.H. 2019. Fatty acid profiles and production in marine phytoplankton. Marine Drugs 17: Article 151. DOI: 10.3390/md17030151.
  • Li H.Y., Lu Y., Zheng J.-W., Yang W.-D. & Liu J.-S. 2014. Biochemical and genetic engineering of diatoms for polyunsaturated fatty acid biosynthesis. Marine Drugs 12: 153–166. DOI: 10.3390/md12010153.
  • Liu J., Yuan C., Hu G. & Li F. 2012. Effects of light intensity on the growth and lipid accumulation of microalga Scenedesmus sp. 11-1 under nitrogen limitation. Applied Biochemistry and Biotechnology 166: 2127–2137. DOI: 10.1007/s12010-012-9639-2.
  • López-Rodríguez M., Cerón-García M.C., López-Rosales L., Navarro-López E., Sánchez-Mirón A., Molina-Miras A., Abreu A.C., Fernández I. & Gracía-Camacho F. 2020. Improved extraction of bioactive compounds from biomass of the marine dinoflagellate microalga Amphidinium carterae. Bioresource Technology 313: Article 123518. DOI: 10.1016/j.biortech.2020.123518.
  • Magoni C., Bertacchi S., Giustra C.M., Guzzetti L., Cozza R., Ferrari M., Torelli A., Marieschi M., Porro D., Branduardi P. & Labra M. 2022. Could microalgae be a strategic choice for responding to the demand for omega-3 fatty acids? A European perspective. Trends in Food Science & Technology 121: 142–155. DOI: 10.1016/j.tifs.2022.01.030.
  • Metcalfe L.D., Schmitz A.A. & Pelka J.R. 1966. Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis. Analytical Chemistry 38: 514–515. DOI: 10.1021/ac60235a044.
  • Minhas A.K., Hodgson P., Barrow C.J. & Adholeya A. 2016. A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Frontiers in Microbiology 7: Article 546. DOI: 10.3389/fmicb.2016.00546.
  • Molina-Miras A., López-Rosales L., Sánchez-Mirón A., Cerón-García M.C., Seoane-Parra S., García-Camacho F. & Molina-Grima E. 2018. Long-term culture of the marine dinoflagellate microalga Amphidinium carterae in an indoor LED-lighted raceway photobioreactor: production of carotenoids and fatty acids. Bioresource Technology 265: 257–267. DOI: 10.1016/j.biortech.2018.05.104.
  • Mooney B.D., Nichols P.D, de Salas M.F. & Hallegraeff G.M. 2007. Lipid, fatty acid, and sterol composition of eight species of Kareniaceae (Dinophyta): chemotaxonomy and putative lipid phycotoxins. Journal of Phycology 43: 101–111. DOI: 10.1111/j.1529-8817.2006.00312.x.
  • Richmond A. & Hu Q. 2013. Handbook of microalgal culture: applied phycology and biotechnology, ed. 2. Wiley-Blackwell, New York, USA. 705 pp.
  • Santin A., Balzano S., Russo M.T., Palma Esposito F., Ferrante M.I., Blasio M., Cavalletti E. & Sardo A. 2022. Microalgae-based PUFAs for food and feed: current applications, future possibilities, and constraints. Journal of Marine Science and Engineering 10: Article 844. DOI: 10.3390/jmse10070844.
  • Sharma K.K., Schuhmann H. & Schenk P.M. 2012. High lipid induction in microalgae for biodiesel production. Energies 5: 1532–1553. DOI: 10.3390/en5051532.
  • Shepherd C.J. & Jackson A.J. 2013. Global fishmeal and fish-oil supply: inputs, outputs and markets. Journal of Fish Biology 83: 1046–1066. DOI: 10.1111/jfb.12224.
  • Shin Y.S., Choi H.I., Choi J.W., Lee J.S., Sung Y.J. & Sim S.J. 2018. Multilateral approach on enhancing economic viability of lipid production from microalgae: a review. Bioresource Technology 258: 335–344. DOI: 10.1111/j.biortech.2018.03.002.
  • Smith R., Jouhet J., Gandini C., Nekrasov V., Marechal E., Napier J.A. & Sayanova O. 2021. Plastidial acyl carrier protein 9-desaturase modulates eicosapentaenoic acid biosynthesis and triacylglycerol accumulation in Phaeodactylum tricornutum. The Plant Journal 106: 1247–1259. DOI: 10.1111/tpj.15231.
  • Solovchenko A.E. 2012. Physiological role of neutral lipid accumulation in eukaryotic microalgae under stresses. Russian Journal of Plant Physiology 59: 192–202. DOI: 10.1134/S1021443712020161.
  • Solovchenko A.E., Khozin-Goldberg I., Didi-Cohen S. & Merzlyak M.N. 2008. Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acids in the green microalga Parietochloris incisa. Journal of Applied Phycology 20: 245–251. DOI: 10.1007/s10811-007-9233-0.
  • Spilling K., Seppälä J., Schwenk D., Rischer H. & Tamminen T. 2021. Variation in the fatty acid profiles of two cold water diatoms grown under different temperature, light, and nutrient regimes. Journal of Applied Phycology 33: 1447–1455. DOI: 10.1007/s10811-021-02380-9.
  • Usup G., Hamid S.Z., Chiet P.K., Wah C.K. & Ahmad A. 2008. Marked differences in fatty acid profiles of some planktonic and benthic marine dinoflagellates from Malaysian waters. Phycologia 47: 105–111. DOI: 10.2216/07-55.1.
  • Vizcaíno-Ochoa V., Lazo J.P., Barón-Sevilla B. & Drawbridge M.A. 2010. The effect of dietary docosahexaenoic acid (DHA) on growth, survival and pigments of California halibut Paralichthys californicus larvae (Ayres, 1810). Aquaculture 302: 228–234. DOI: 10.1016/j.aquaculture.2010.02.022.
  • Wacker A., Piepho M., Harwood J.L., Gruschina I.A. & Arts M.T. 2016. Light-induced changes in fatty acid profiles of specific lipid classes in several freshwater phytoplankton species. Frontiers in Plant Science 7: Article 264. DOI: 10.3389/fpls.2016.00264.
  • Yang Y., Du L., Hosokawa M. & Miyashita K. 2020. Total lipids content, lipid class and fatty acid composition of ten species of microalgae. Journal of Oleo Science 69: 1181–1189. DOI: 10.5650/jos.ess20140.
  • Zhukova N.V. 2007. Changes in the fatty acid composition of symbiotic dinoflagellate from hermatypic coral Echinopora lamellosa during adaptation to the irradiance level. Russian Journal of Plant Physiology 54: 763–769. DOI: 10.1134/S1021443707060076.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.