87
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Potential of a chicken manure concentrate additive for Arthrospira maxima (Cyanophyceae): biochemical characterization and phycocyanin production

, , , , , , , ORCID Icon & ORCID Icon show all
Pages 158-169 | Received 26 Jul 2023, Accepted 25 Dec 2023, Published online: 19 Mar 2024

REFERENCES

  • Abdelnour S.A., Swelum A.A., Salama A., Al-Ghadi M.Q., Qattan S.Y.A., Abd El-Hack M.E., Khafaga A.F., Alhimaidi A.R., Almutairi B.O., Ammari A.A. et al. 2020. The beneficial impacts of dietary phycocyanin supplementation on growing rabbits under high ambient temperature. Italian Journal of Animal Science 19: 1046–1056. DOI: 10.1080/1828051X.2020.1815598.
  • Abouelenien F., Nakashimada Y. & Nishio N. 2009. Dry mesophilic fermentation of chicken manure for production of methane by repeated batch culture. Journal of Bioscience and Bioengineering 107: 293–295. DOI: 10.1016/j.jbiosc.2008.10.009.
  • Ahmad R.S., Imran A. & Hussain M.B. 2018. Nutritional composition of meat. In: Meat science and nutrition (Ed. by M.S. Arshad), pp 61–75. IntechOpen, London, UK.
  • Banskota A.H., Sperker S., Stefanova R., McGinn P.J. & O’Leary S.J.B. 2019. Antioxidant properties and lipid composition of selected microalgae. Journal of Applied Phycology 31: 309–318. DOI: 10.1007/s10811-018-1523-1.
  • Becker E.W. 2007. Micro-algae as a source of protein. Biotechnology Advances 25: 207–210. DOI: 10.1016/j.biotechadv.2006.11.002.
  • Belay A., Ota Y., Miyakawa K. & Shimamatsu H. 1993. Current knowledge on potential health benefits of Spirulina. Journal of Applied Phycology 5: 235–241. DOI: 10.1007/BF00004024.
  • Benvenuti G., Bosma R., Ji F., Lamers P., Barbosa M.J. & Wijffels R.H. 2016. Batch and semi-continuous microalgal TAG production in lab-scale and outdoor photobioreactors. Journal of Applied Phycology 28: 3167–3177. DOI: 10.1007/s10811-016-0897-1.
  • Bennetau-Pelissero C. 2019. Plant proteins from legumes. In: Bioactive molecules in food (Ed. by J.-M. Mérillon & K.G. Ramawat), pp 223–265. Springer, Berlin, Germany. DOI: 10.1007/978-3-319-78030-6_3.
  • Bennett A. & Bogorad L. 1973. Complementary chromatic adaptation in a filamentous blue-green alga. Journal of Cell Biology 58: 419–435. DOI: 10.1083/jcb.58.2.419.
  • Bernal M.P., Alburquerque J.A. & Moral R. 2009. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresource Technology 100: 5444–5453. DOI: 10.1016/j.biortech.2008.11.027.
  • Bertolin T.E., Farias D., Guarienti C., Petry F.T.S., Colla L.M. & Costa J.A.V. 2011. Antioxidant effect of phycocyanin on oxidative stress induced with monosodium glutamate in rats. Brazilian Archives of Biology and Technology 54: 733–738. DOI: 10.1590/S1516-89132011000400012.
  • Bezerra P.Q.M., Moraes L., Cardoso L.G., Druzian J.I., Morais M.G., Nunes I.L. & Costa J.A.V. 2020. Spirulina sp. LEB 18 cultivation in seawater and reduced nutrients: bioprocess strategy for increasing carbohydrates in biomass. Bioresource Technology 316: Article 123883. DOI: 10.1016/j.biortech.2020.123883.
  • Boussiba S. & Richmond A.E. 1979. Isolation and characterization of phycocyanins from the blue-green alga Spirulina platensis. Archives of Microbiology 120: 155–159. DOI: 10.1007/BF00409102.
  • Borowitzka M.A. & Siva C.J. 2007. The taxonomy of the genus Dunaliella (Chlorophyta, Dunaliellales) with emphasis on the marine and halophilic species. Journal of Applied Phycology 19: 567–590. DOI: 10.1007/s10811-007-9171-x.
  • Bujoczek G., Oleszkiewicz J., Sparling R. & Cenkowski S. 2000. High solid anaerobic digestion of chicken manure. Journal of Agricultural Engineering Research 76: 51–60. DOI: 10.1006/jaer.2000.0529.
  • Cardoso L. G., Duarte J.H., Andrade B.B., Lemos P.V.F., Costa J.A.V., Druzian J.I. & Chinalia F.A. 2020. Spirulina sp. LEB 18 cultivation in outdoor pilot scale using aquaculture wastewater: high biomass, carotenoid, lipid and carbohydrate production. Aquaculture 525: Article 735272. DOI: 10.1016/j.aquaculture.2020.735272.
  • Çelekli A., Topyürek A., Markou G. & Bozkurt H. 2016. A multivariate approach to evaluate biomass production, biochemical composition and stress compounds of Spirulina platensis cultivated in wastewater. Applied Biochemistry and Biotechnology 180: 728–739. DOI: 10.1007/s12010-016-2128-2.
  • Chauton M.S., Olsen Y. & Vadstein O. 2013. Biomass production from the microalga Phaeodactylum tricornutum: nutrient stress and chemical composition in exponential fed-batch cultures. Biomass and Bioenergy 58: 87–94. DOI: 10.1016/j.biombioe.2013.10.004.
  • Chen C.Y., Kao P.C., Tsai C.J., Lee D.J. & Chang J.S. 2013. Engineering strategies for simultaneous enhancement of C-phycocyanin production and CO2 fixation with Spirulina platensis. Bioresource Technology 145: 307–312. DOI: 10.1016/j.biortech.2013.01.054.
  • Cheng P., Chu R., Zhang X., Song L., Chen D., Zhou C., Yan X., Cheng J.J. & Ruan R. 2020. Screening of the dominant Chlorella pyrenoidosa for biofilm attached culture and feed production while treating swine wastewater. Bioresource Technology 318: Article 124054. DOI: 10.1016/j.biortech.2020.124054.
  • Cheunbarn S. & Peerapornpisal Y. 2010. Cultivation of Spirulina platensis using anaerobically swine wastewater treatment effluent. International Journal of Agriculture and Biology 12: 586–590.
  • Chia S.R., Chew K.W., Show P.L., Xia A., Ho S.H. & Lim J.W. 2019. Spirulina platensis based biorefinery for the production of value-added products for food and pharmaceutical applications. Bioresource Technology 289: Article 121727. DOI: 10.1016/j.biortech.2019.121727.
  • Chien Y.H. & Shiau W.C. 2005. The effects of dietary supplementation of algae and synthetic astaxanthin on body astaxanthin, survival, growth, and low dissolved oxygen stress resistance of kuruma prawn, Marsupenaeus japonicus Bate. Journal of Experimental Marine Biology and Ecology 318: 201–211. DOI: 10.1016/j.jembe.2004.12.016.
  • Chittora D., Meena M., Barupal T., Swapnil P. & Sharma K. 2020. Cyanobacteria as a source of biofertilizers for sustainable agriculture. Biochemistry and Biophysics Reports 22: Article 100737. DOI: 10.1016/j.bbrep.2020.100737.
  • Choi S.H. 2007. Treatment and management of the livestock manure. KCID Journal 14: 110–120.
  • Ciferri O. 1983. Spirulina, the edible microorganism. Microbiological Reviews 47: 551–578. DOI: 10.1128/mr.47.4.551-578.1983.
  • da Silva S.P., Ferreira do Valle A. & Perrone D. 2021. Microencapsulated Spirulina maxima biomass as an ingredient for the production of nutritionally enriched and sensorially well-accepted vegan biscuits. LWTFood Science and Technology 142: Article 110997. DOI: 10.1016/j.lwt.2021.110997.
  • Daneshvar E., Antikainen L., Koutra E., Kornaros M. & Bhatnagar A. 2018. Investigation on the feasibility of Chlorella vulgaris cultivation in a mixture of pulp and aquaculture effluents: treatment of wastewater and lipid extraction. Bioresource Technology 255: 104–110. DOI: 10.1016/j.biortech.2018.01.101.
  • Daşbaşı T., Saçmacı Ş., Ülgen A. & Kartal Ş. 2016. Determination of some metal ions in various meat and baby food samples by atomic spectrometry. Food Chemistry 197: 107–113. DOI: 10.1016/j.foodchem.2015.10.093.
  • Dewi E.N., Amalia U. & Mel M. 2016. The effect of different treatments to the amino acid contents of micro algae Spirulina sp. Aquatic Procedia 7: 59–65. DOI: 10.1016/j.aqpro.2016.07.008.
  • Eaton A.D., Clesceri L.S., Rice W., Greenberg A.E. & Franson M.A.H. [Eds] 2005. Standard methods for the examination of water and wastewater, ed. 21. American Public Health Association, Washington, USA.
  • Edirisinghe S.L., Dananjaya S.H.S., Nikapitiya C., Liyanage T.D., Lee K.A., Oh C., Kang D.H. & De Zoysa M. 2019. Novel pectin isolated from Spirulina maxima enhances the disease resistance and immune responses in zebrafish against Edwardsiella piscicida and Aeromonas hydrophila. Fish and Shellfish Immunology 94: 558–565. DOI: 10.1016/j.fsi.2019.09.054.
  • El-Tantawy W.H. 2016. Antioxidant effects of Spirulina supplement against lead acetate-induced hepatic injury in rats. Journal of Traditional and Complementary Medicine 6: 327–331. DOI: 10.1016/j.jtcme.2015.02.001.
  • Ferreira A., Marques P., Ribeiro B., Assemany P., de Mendonça H.V., Barata A., Oliveira A.C., Reis A., Pinheiro H.M. & Gouveia L. 2018. Combining biotechnology with circular bioeconomy: from poultry, swine, cattle, brewery, dairy and urban wastewaters to biohydrogen. Environmental Research 164: 32–38. DOI: 10.1016/j.envres.2018.02.007.
  • Figueroa-Torres G.M., Pittman J.K. & Theodoropoulos C. 2022. A highly productive mixotrophic fed-batch strategy for enhanced microalgal cultivation. Sustainable Energy & Fuels 6: 2771–2782. DOI: 10.1039/D2SE00124A.
  • Font-Palma C. 2019. Methods for the treatment of cattle manure—A review. C Journal of Carbon Research 5: Article 27. DOI: 10.3390/c5020027.
  • FAO 2018. Nitrogen inputs to agricultural soils from livestock manure: new statistics. Food and Agriculture Organization of the United Nations, Rome, Italy. 68 pp.
  • Gerber P., Opio C. & Steinfeld H. 2007. Poultry production and the environment–a review. Animal production and health division. Food and Agriculture Organization of the United Nations, Rome, Italy. pp 1–27.
  • Gramegna G., Scortica A., Scafati V., Ferella F., Gurrieri L., Giovannoni M., Bassi R., Sparla F., Mattei B. & Benedetti M. 2020. Exploring the potential of microalgae in the recycling of dairy wastes. Bioresource Technology Reports 12: Article 100604. DOI: 10.1016/j.biteb.2020.100604.
  • Gratzfeld-Huesgen A. 1999. Sensitive and reliable amino acid analysis in protein hydrolysates using the Agilent 1100 Series HPLC - Technical note. Agilent Technologies, Santa Clara, California, USA.
  • Helrich K. 1990. Official methods of analysis of the association of official analytical chemists, ed. 15. Association of Official Analytical Chemists, Arlington, Virginia, USA. 684 pp.
  • Holman B.W. & Malau‐Aduli A.E. 2013. Spirulina as a livestock supplement and animal feed. Journal of Animal Physiology and Animal Nutrition 97: 615–623. DOI: 10.1111/j.1439-0396.2012.01328.x.
  • James C.S. 1995. Analytical chemistry of foods. Blackie Academic & Professional, London, UK. 178 pp.
  • Jeong D.H., Shin J., Lee C., Yu S. & Kim Y. 2013. A study on the improvement measures of livestock manure management and organic fertilizer use in Nonsan area. Journal of Environmental Impact Assessment 22: 345–359. DOI: 10.14249/eia.2013.22.4.345.
  • Khan S., Mobashar M., Mahsood F.K., Javaid S., Abdel-Wareth A.A., Ammanullah H. & Mahmood A. 2020. Spirulina inclusion levels in a broiler ration: evaluation of growth performance, gut integrity, and immunity. Tropical Animal Health and Production 52: 3233–3240. DOI: 10.1007/s11250-020-02349-9.
  • Kumar D., Dhar D.W., Pabbi S., Kumar N. & Walia S. 2014. Extraction and purification of C-phycocyanin from Spirulina platensis (CCC540). Indian Journal of Plant Physiology 19: 184–188. DOI: 10.1007/s40502-014-0094-7.
  • Kumari A., Pathak A.K. & Guria C. 2015. Cost-effective cultivation of Spirulina platensis using NPK fertilizer. Agricultural Research 4: 261–271. DOI: 10.1007/s40003-015-0168-4.
  • Lafarga T., Fernández-Sevilla J.M., González-López C. & Acién-Fernández F.G. 2020. Spirulina for the food and functional food industries. Food Research International 137: Article 109356. DOI: 10.1016/j.foodres.2020.109356.
  • Lee W.K., Ryu Y.K., Choi W.Y., Kim T., Park A., Lee Y.J., Jeong Y., Lee C.G. & Kang D.H. 2021. Year-round cultivation of Tetraselmis sp. for essential lipid production in a semi-open raceway system. Marine Drugs 19: Article 314. DOI: 10.3390/md19060314.
  • Leridon H. 2020. World population outlook: explosion or implosion? Population & Societies 573: 1–4. DOI: 10.3917/popsoc.573.0001.
  • Luque de Castro M.D. & García-Ayuso L.E. 1998. Soxhlet extraction of solid materials: an outdated technique with a promising innovative future. Analytica Chimica Acta 369: 1–10. DOI: 10.1016/S0003-2670(98)00233-5.
  • Madkour F.F., Kamil A.E.W. & Nasr H.S. 2012. Production and nutritive value of Spirulina platensis in reduced cost media. Egyptian Journal of Aquatic Research 38: 51–57. DOI: 10.1016/j.ejar.2012.09.003.
  • Markou G., Mitrogiannis D., Çelekli A., Bozkurt H., Georgakakis D. & Chrysikopoulos C.V. 2015. Biosorption of Cu2+ and Ni2+ by Arthrospira platensis with different biochemical compositions. Chemical Engineering Journal 259: 806–813. DOI: 10.1016/j.cej.2014.08.037.
  • Menegotto A.L.L., Souza C.L.M., Colla L.M., Costa J.A.V., Sehn E., Bittencourt P.R.S., Moraes Flores C., Canan C. & Colla E. 2019. Investigation of techno-functional and physicochemical properties of Spirulina platensis protein concentrate for food enrichment. LWT – Food Science and Technology 114: Article 108267. DOI: 10.1016/j.lwt.2019.108267.
  • Miller B.F. 1984. Extruding hatchery waste. Poultry Science 63: 1284–1286. DOI: 10.3382/ps.0631284.
  • Mizera A., Kuczaj M. & Szul A. 2019. Impact of the Spirulina maxima extract addition to semen extender on bovine sperm quality. Italian Journal of Animal Science 18: 601–607. DOI: 10.1080/1828051X.2018.1548914.
  • Moorhead K., Capelli B. & Cysewski G.R. 2011. Spirulina: nature’s superfood. Cyanotech Corporation, Hawaii, USA. 67 pp.
  • Moraes C.C., Sala L., Cerveira G.P. & Kalil S.J. 2011. C-phycocyanin extraction from Spirulina platensis wet biomass. Brazilian Journal of Chemical Engineering 28: 45–49. DOI: 10.1590/S0104-66322011000100006.
  • Moran R. 1982. Formulae for determination of chlorophyllous pigments extracted with N,N-dimethylformamide. Plant Physiology 69: 1376–1381. DOI: 10.1104/pp.69.6.1376.
  • Nascimento R.Q., Deamici K.M., Tavares P.P.L.G., de Andrade R.B., Guimarães L.C., Costa J.A.V., Magalhães-Guedes K.T., Druzian J.I. & de Souza C.O. 2022. Improving water kefir nutritional quality via addition of viable Spirulina biomass. Bioresource Technology Reports 17: Article 100914. DOI: 10.1016/j.biteb.2021.100914.
  • Nelson D.L. & Cox M.M. 2022. Princípios de bioquímica de Lehninger, ed. 8. Artmed Editora, Porto Alegre, Brazil. 1248 pp.
  • Nimptsch J. & Pflugmacher S. 2008. Decomposing leaf litter: the effect of allochthonous degradation products on the antioxidant fitness and photosynthesis of Vesicularia dubyana. Ecotoxicology and Environmental Safety 69: 541–545. DOI: 10.1016/j.ecoenv.2007.09.003.
  • Ogato T., Kifle D., Fetahi T. & Sitotaw B. 2014. Evaluation of growth and biomass production of Arthrospira (Spirulina) fusiformis in laboratory cultures using waters from the Ethiopian soda lakes Chitu and Shala. Journal of Applied Phycology 26: 2273–2282. DOI: 10.1007/s10811-014-0251-4.
  • Ores J.C., Amarante M.C.A. & Kalil S.J. 2016. Co-production of carbonic anhydrase and phycobiliproteins by Spirulina sp. and Synechococcus nidulans. Bioresource Technology 219: 219–227. DOI: 10.1016/j.biortech.2016.07.133.
  • Pereira H., Custódio L., Rodrigues M.J., de Sousa C.B., Oliveira M., Barreira L., Neng N.R., Nogueira J.M.F., Alrokayan S.A., Mouffouk F. et al. 2015. Biological activities and chemical composition of methanolic extracts of selected autochthonous microalgae strains from the Red Sea. Marine Drugs 13: 3531–3549. DOI: 10.3390/md13063531.
  • Radmann E.M., Reinehr C.O. & Costa J.A.V. 2007. Optimization of the repeated batch cultivation of microalga Spirulina platensis in open raceway ponds. Aquaculture 265: 118–126. DOI: 10.1016/j.aquaculture.2007.02.001.
  • Rajagopal R. & Massé D.I. 2016. Start-up of dry anaerobic digestion system for processing solid poultry litter using adapted liquid inoculum. Process Safety and Environmental Protection 102: 495–502. DOI: 10.1016/j.psep.2016.05.003.
  • Rajagopal R., Mousavi S.E., Goyette B. & Adhikary S. 2021. Coupling of microalgae cultivation with anaerobic digestion of poultry wastes: toward sustainable value added bioproducts. Bioengineering 8: Article 57. DOI: 10.3390/bioengineering8050057.
  • Ritchie R.J. 2006. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynthesis Research 89: 27–41. DOI: 10.1007/s11120-006-9065-9.
  • Rodríguez De Marco E.R., Steffolani M.E., Martínez C.S. & León A.E. 2014. Effects of Spirulina biomass on the technological and nutritional quality of bread wheat pasta. LWT – Food Science and Technology 58: 102–108. DOI: 10.1016/j.lwt.2014.02.054.
  • Romay C., Armesto J., Remirez D., González R., Ledon N. & García I. 1998. Antioxidant and anti-inflammatory properties of C-phycocyanin from blue-green algae. Inflammation Research 47: 36–41. DOI: 10.1007/s000110050256.
  • Roy P.K., Qamar A.Y., Tanga B.M., Bang S., Seong G., Fang X., Kim G., Edirisinghe S.L., De Zoysa M., Kang D.H., Saadeldin I.M. & Cho J. 2021. Modified Spirulina maxima pectin nanoparticles improve the developmental competence of in vitro matured porcine oocytes. Animals (Basel) 11: Article 2483. DOI: 10.3390/ani11092483.
  • Salo-Väänänen P.P. & Koivistoinen P.E. 1996. Determination of protein in foods: comparison of net protein and crude protein (N× 6.25) values. Food Chemistry 57: 27–31.
  • Sanchez M., Bernal-Castillo J., Rozo C. & Rodríguez I. 2003. Spirulina (Arthrospira): an edible microorganism: a review. Universitas Scientiarum 8: 7–24.
  • Sonawane S.K., Bagul M.B., LeBlanc J.G. & Arya S.S. 2016. Nutritional, functional, thermal and structural characteristics of Citrullus lanatus and Limonia acidissima seed flours. Journal of Food Measurement and Characterization 10: 72–79. DOI: 10.1007/s11694-015-9278-8.
  • Song Y.C., Kim M., Shon H., Jegatheesan V. & Kim S. 2018. Modeling methane production in anaerobic forward osmosis bioreactor using a modified anaerobic digestion model No. 1. Bioresource Technology 264: 211–218. DOI: 10.1016/j.biortech.2018.04.125.
  • Turzyński T., Kluska J. & Kardaś D. 2022. Study on chicken manure combustion and heat production in terms of thermal self-sufficiency of a poultry farm. Renewable Energy 191: 84–91. DOI: 10.1016/j.renene.2022.04.034.
  • Viegas C., Gouveia L. & Gonçalves M. 2021. Bioremediation of cattle manure using microalgae after pre-treatment with biomass ash. Bioresource Technology Reports 14: Article 100681. DOI: 10.1016/j.biteb.2021.100681.
  • Wang L., Li Y., Chen P., Min M., Chen Y., Zhu J. & Ruan R.R. 2010. Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresource Technology 101: 2623–2628. DOI: 10.1016/j.biortech.2009.10.062.
  • Wu S., Ni P., Li J., Sun H., Wang Y., Luo H., Dach J. & Dong R. 2016. Integrated approach to sustain biogas production in anaerobic digestion of chicken manure under recycled utilization of liquid digestate: dynamics of ammonium accumulation and mitigation control. Bioresource Technology 205: 75–81. DOI: 10.1016/j.biortech.2016.01.021.
  • Zarrouk C. 1966. Contribution à l’étude d’une Cyanophycée. Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthèse de Spirulina maxima. PhD thesis. University of Paris, Paris, France. 85 pp.
  • Zhu L.D. & Hiltunen E. 2016. Application of livestock waste compost to cultivate microalgae for bioproducts production: a feasible framework. Renewable and Sustainable Energy Reviews 54: 1285–1290. DOI: 10.1016/j.rser.2015.10.093

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.