172
Views
3
CrossRef citations to date
0
Altmetric
Articles

A new semi-analytical model for effective thermal conductivity of nanofluids

, , &
Pages 647-662 | Received 17 Aug 2015, Accepted 05 Jan 2016, Published online: 16 Mar 2016

References

  • Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. San Francisco: ASME International mechanical engineering congress and exposition;1995 Nov 1. p. 12–17.
  • Mahian O, Kianifar A, Kalogirou S, et al. A review of the applications of nanofluids in solar energy. Int J Heat Mass Transf. 2013;57:582–594. doi:10.1016/j.ijheatmasstransfer.2012.10.037.
  • Mahian O, Kianifar A, Kleinstreuer C, et al. A review of entropy generation in nanofluid flow. Int J Heat Mass Transf. 2013;65:514–532. doi:10.1016/j.ijheatmasstransfer.2013.06.010.
  • Celen A, Çebi A, Aktas M, et al. A review of nanorefrigerants: flow characteristics and applications. Int J Refrig. 2014;44:125–140. doi:10.1016/j.ijrefrig.2014.05.009.
  • Maxwell J. A treatise on electricity and magnetism. Oxford: Clarendon Press; 1891.
  • Yu W, Choi SUS. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanopart Res. 2003;5:167–171. doi:10.1023/A:1024438603801.
  • Hamilton RL, Crosser OK. Thermal conductivity of heterogeneous two component systems. Ind Eng Chem Res. 1962;1:187–191.
  • Bruggeman DAG. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Annalen Der Physik. 1935;416:636–664. doi:10.1002/(ISSN)1521-3889.
  • Keblinski P, Phillpot SR, Choi SUS, et al. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transf. 2002;45:855–863. doi:10.1016/S0017-9310(01)00175-2.
  • Prasher R, Phelan PE, Bhattacharya P. Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). Nano Lett. 2006;6:1529–1534. doi:10.1021/nl060992s.
  • Gao JW, Zheng RT, Ohtani H, et al. Experimental investigation of heat conduction mechanisms in nanofluids-clue on clustering. Nano Lett. 2009;9:4128–4132. doi:10.1021/nl902358m.
  • Hong J, Kim D. Effects of aggregation on the thermal conductivity of alumina/water nanofluids. Thermochimica Acta. 2012;542:28–32. doi:10.1016/j.tca.2011.12.019.
  • Keblinski P, Eastman JA, Cahill DF. Nanofluids for thermal transport. Mater Today. 2005;8:36–44. doi:10.1016/S1369-7021(05)70936-6.
  • Evans W, Prasher R, Fish J, et al. Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids. Int J Heat Mass Transf. 2008;51:1431–1438. doi:10.1016/j.ijheatmasstransfer.2007.10.017.
  • Feng XM, Johnson DW. Characterization of dispersed and aggregated Al2O3 morphologies for predicting nanofluid thermal conductivities. J Nanopart Res. 2013;15:1718–1729. doi:10.1007/s11051-013-1718-y.
  • Philip J, Shima PD, Raj B. Enhancement of thermal conductivity in magnetite based nanofluid due to chain like structures. Appl Phys Lett. 2007;91:203103–203108. doi:10.1063/1.2812699.
  • Jang SP, Choi SUS. Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett. 2004;84:4316–4318. doi:10.1063/1.1756684.
  • Kumar DH, Patel HE, Kumar VRR, et al. Model for heat conduction in nanofluids. Phys Rev Lett. 2004;93:4301–4304. doi:10.1103/PhysRevLett.93.144301.
  • Prasher R, Bhattacharya P, Phelan PE. Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys Rev Lett. 2005;94:025901-1-025901-4. doi:10.1103/PhysRevLett.94.025901.
  • Xiao BQ, Yang Y, Chen LX. Developing a novel form of thermal conductivity of nanofluids with Brownian motion effect by means of fractal geometry. Powder Technol. 2013;239:409–414. doi:10.1016/j.powtec.2013.02.029.
  • Mallick SS, Mishra A, Kundan L. An investigation into modelling thermal conductivity for alumina-water nanofluids. Powder Technol. 2013;233:234–244. doi:10.1016/j.powtec.2012.08.003.
  • Murshed SMS, Leong KC, Yang C. A combined model for the effective thermal conductivity of nanofluids. Appl Therm Eng. 2009;29:2477–2483. doi:10.1016/j.applthermaleng.2008.12.018.
  • Pang CW, Jung JY, Kang YT. Aggregation based model for heat conduction mechanism in nanofluids. Int J Heat Mass Transf. 2014;72:393–399. doi:10.1016/j.ijheatmasstransfer.2013.12.055.
  • Nie C, Marlow WH, Hassan YA. Discussion of proposed mechanisms of thermal conductivity enhancement in nanofluids. Int J Heat Mass Transf. 2008;51:1342–1348. doi:10.1016/j.ijheatmasstransfer.2007.11.034.
  • Meibodi ME, Sefti MV, Rashidi AM, et al. Simple model for thermal conductivity of nanofluids using resistance model approach. Int Commun Heat Mass. 2010;37:555–559. doi:10.1016/j.icheatmasstransfer.2009.12.010.
  • Teng TP, Hung YH, Teng TC, et al. The effect of alumina/water nanofluid particle size on thermal conductivity. Appl Therm Eng. 2010;30:2213–2218. doi:10.1016/j.applthermaleng.2010.05.036.
  • Mintsa HA, Roy G, Nguyen CT, et al. New temperature dependent thermal conductivity data for water based nanofluids. Int J Therm Sci. 2009;48:363–371. doi:10.1016/j.ijthermalsci.2008.03.009.
  • Esfe M, Saedodin S, Mahian O, et al. Thermal conductivity of Al2O3/water nanofluids. J Therm Anal Calorim. 2014;117:675–681. doi:10.1007/s10973-014-3771-x.
  • Hashimoto T, Shibayama M, Kawai H. Domain-boundary structure of styrene-isoprene block copolymer films cast from solution. 4. Molecularweight dependence of lamellar microdomains. Macromolecules. 1980;13:1237–1247. doi:10.1021/ma60077a040.
  • Rizvi IH, Jain A, Ghosh SK, et al. Mathematical modelling of thermal conductivity for nanofluid considering interfacial nano-layer. Heat Mass Transfer. 2013;49:595–600. doi:10.1007/s00231-013-1117-z.
  • Xuan YM, Li Q. Heat transfer enhancement of nanofluids. Int J Heat Fluid Fl. 2000;21:58–64. doi:10.1016/S0142-727X(99)00067-3.
  • Okeke G, Witharana S, Antony SJ, et al. Computational analysis of factors influencing thermal conductivity of nanofluids. J Nanopart Res. 2011;13:6365–6375. doi:10.1007/s11051-011-0389-9.
  • Nan CW, Birringer R, Clarke DR, et al. Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys. 1997;81:6692–6699. doi:10.1063/1.365209.
  • Wilson OM, Hu X, Cahill DG, et al. Colloidal metal particles as probes of nanoscale thermal transport in fluids. Phys Rev B. 2002;66:224301-1-224301-5. doi:10.1103/PhysRevB.66.224301.
  • Longo GA, Zilio C. Experimental measurement of thermophysical properties of oxide-water nano-fluids down to ice-point. Exp Therm Fluid Sci. 2011;35:1313–1324. doi:10.1016/j.expthermflusci.2011.04.019.
  • Longo GA, Zilio C, Ceseracciu E, et al. Application of artificial neural network (ANN) for the prediction of thermal conductivity of oxide-water nanofluids. Nano Energy. 2012;1:290–296. doi:10.1016/j.nanoen.2011.11.007.
  • Gharagozloo PE, Goodson KE. Aggregate fractal dimensions and thermal conduction in nanofluids. J Appl Phys. 2010;108:074309-1-074309-7. doi:10.1063/1.3481423.
  • Potanin AA, Rooij RD, Ende DV, et al. Microrheological modeling of weakly aggregated dispersions. J Chem Phys. 1995;102:5845–5853. doi:10.1063/1.469317.
  • Prasher R, Song D, Wang J, et al. Measurements of nanofluid viscosity and its implications for thermal applications. Appl Phys Lett. 2006;89:133108–133110. doi:10.1063/1.2356113.
  • Wen DS, Ding YL. Experimental investigation into the pool boiling heat transfer of aqueous based γ-alumina nanofluids. J Nanopart Res. 2005;7:265–274. doi:10.1007/s11051-005-3478-9.
  • Leong KC, Yang C, Murshed SMS. A model for the thermal conductivity of nanofluids – the effect of interfacial layer. J Nanopart Res. 2006;8:245–254. doi:10.1007/s11051-005-9018-9.
  • Das SK, Putra N, Roetzel W. Pool boiling characteristics of nano-fluids. Int J Heat Mass Transf. 2003;46:851–862. doi:10.1016/S0017-9310(02)00348-4.
  • Said Z, Sabiha M, Saidur R, et al. Performance enhancement of a flat plate solar collector using titanium dioxide nanofluid and polyethylene glycol dispersant. J Clean Prod. 2015;92:343–353. doi:10.1016/j.jclepro.2015.01.007.
  • Pastoriza-Gallego M, Lugo L, Cabaleiro D, et al. Thermophysical profile of ethylene glycol-based ZnO nanofluids. J Chem Thermodynamics. 2014;73:23–30. doi:10.1016/j.jct.2013.07.002.
  • Suganthi K, Leela Vinodhan V, Rajan K. Heat transfer performance and transport properties of ZnO–ethylene glycol and ZnO–ethylene glycol–water nanofluid coolants. Applied Energy. 2014;135:548–559. doi:10.1016/j.apenergy.2014.09.023.
  • Jiang WT, Ding GL, Peng H, et al. Experimental and model research on nanorefrigerant thermal conductivity. HVAC&R Res. 2009;15:651–669. doi:10.1080/10789669.2009.10390855.
  • Prasher R, Bhattacharya P, Phelan P. Brownian motion based convective-conductive model for the effective thermal conductivity of nanofluids. J Heat Trans-T ASME. 2006;128:588–595. doi:10.1115/1.2188509.
  • Koo J, Kleinstreuer C. A new thermal conductivity model for nanofluids. J Nanopart Res. 2004;6:577–588. doi:10.1007/s11051-004-3170-5.
  • Chon CH, Kihm KD, Lee SP, et al. Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl Phys Lett. 2005;97:153107–3. doi:10.1063/1.2093936.
  • Yu CJ, Richter AG, Datta A, et al. Molecular layering in a liquid on a solid substrate: an X-ray reflectivity study. Physica B. 2000;283:27–31. doi:10.1016/S0921-4526(99)01885-2.
  • Xue L, Keblinski P, Phillpot SR, et al. Effect of liquid layering at the liquid–solid interface on thermal transport. Int J Heat Mass Transf. 2004;47:4277–4284. doi:10.1016/j.ijheatmasstransfer.2004.05.016.
  • Waite TD, Cleaver JK, Beattie JK. Aggregation kinetics and fractal structure of gamma-alumina assemblages. J Colloid Interf Sci. 2001;241:333–339. doi:10.1006/jcis.2001.7694.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.