85
Views
0
CrossRef citations to date
0
Altmetric
Regular articles

The equilibrium crystallisation process of non-crystalline Cu3Au

, &
Pages 111-119 | Received 08 Feb 2016, Accepted 21 Apr 2016, Published online: 25 May 2016

References

  • Klement W, Willens RH, Duwez P. Non-crystalline structure in solidified gold-silicon alloys. Nature. 1960;187:869–870. doi:10.1038/187869b0.
  • Altounian Z, Tu GH, Strom-Olsen JO. Crystallization characteristics of Cu-Zr metallic glasses from Cu70Zr30 to Cu25Zr75. J Appl Phys. 1982;53:4755–4760. doi:10.1063/1.331304.
  • Cheung TL, Shek CH. Thermal and mechanical properties of Cu-Zr-Al bulk metallic glasses. J Alloys Comp. 2007;434–435:71–74. doi:10.1016/j.jallcom.2006.08.109.
  • Sahin M. Characterization of properties in plastically deformed austenitic stainless steels joined by friction welding. Mater Des. 2009;30:135–144. doi:10.1016/j.matdes.2008.04.033.
  • Bo H, Wang J, Jin S, et al. Thermodynamic analysis of the Al-Cu-Zr bulk metallic glass system. Intermetallics. 2010;18:2322–2327. doi:10.1016/j.intermet.2010.08.002.
  • Huang YJ, Shen J, Chen JJJ, et al. Critical cooling rate and thermal stability for a Ti-Zr-Ni-Cu-Be metallic glass. J Alloys Comp. 2009;477:920–924. doi:10.1016/j.jallcom.2008.11.017.
  • Huang L, Wang CZ, Ho KM. Structure and dynamics of liquid Ni36Zr64 by ab initio molecular dynamics. Phys Rev B. 2011;83(18):184103. doi:10.1103/PhysRevB.83.184103.
  • Cheng YQ, Ma E. Atomic-level structure and structure-property relationship in metallic glasses. Prog Mater Sci. 2011;56:379–473. doi:10.1016/j.pmatsci.2010.12.002.
  • Lu K. Nanocrystalline metals crystallized from amorphous solids: nanocrystallization, structure, and properties. Mat Sci Eng. 1996;16:161–221. doi:10.1016/0927-796X(95)00187-5.
  • Dos Santos DS, Dos Santos DR. Crystallization kinetics of Fe-B-Si metallic glasses. J Non-Cryst Solids. 2002;304:56–63. doi:10.1016/S0022-3093(02)01004-9.
  • Pogatscher S, Uggowitzer PJ, Loffler JF. In-situ probing of metallic glass formation and crystallization upon heating and cooling via fast differential scanning calorimetry. J Appl Phys. 2014;104(1–5):251908.
  • Kalak I, Kramer MJ, Napolitano RE. Crystallization kinetics and phase transformation mechanisms in Cu56Zr44 glassy alloy. Metall Mater Trans A. 2015;46:3356–3364. doi:10.1007/s11661-015-2921-5.
  • Miglierini M, Procházka V, Rüffer R, et al. In situ crystallization of metallic glasses during magnetic field annealing. Acta Mater. 2015;91:50–56. doi:10.1016/j.actamat.2015.03.012.
  • Schroers J, Wu Y, Busch R, et al. Transition from nucleation controlled to growth controlled crystallization in Pd43Ni10Cu27P20 melts. Acta Mater. 2001;49:2773–2781. doi:10.1016/S1359-6454(01)00159-8.
  • Zhou XW, Johnson RA, Wadley HNG. Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys Rev B. 2004;69(14):144113. doi:10.1103/PhysRevB.69.144113.
  • Plimpton SJ. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117:1–19. doi:10.1006/jcph.1995.1039.
  • Stukowski A. Visualization and analysis of atomistic simulation data with OVITO-the open Visualization Tool. Modeling Simul Mater Sci Eng. 2010;18(1):015012.
  • Stukowski A. Structure identification methods for atomistic simulations of crystalline materials. Modelling Simul Mater Sci Eng. 2012;20(4):045021. doi:10.1088/0965-0393/20/4/045021.
  • Lad KN, Savalia RT, Pratap A, et al. Isokinetic and isoconversional study of crystallization kinetics of a Zr-based metallic glass. Therm Acta. 2008;473:74–80. doi:10.1016/j.tca.2008.04.011.
  • Avrami M. Kinetics of phase change. I. General theory. J Chem Phys. 1939;7:1103–1112.
  • Avrami M. Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys. 1941;9:177–184. doi:10.1063/1.1750872.
  • Paxton AT. Structural energy-volume relations in first-row transition metals. Phys Rev B. 1990;41:8127–8138. doi:10.1103/PhysRevB.41.8127.
  • Wang ZQ, Lu SH, Li YS, et al. Epitaxial growth of a metastable modification of copper with body-centered-cubic structure. Phys Rev B. 1987;35:9322–9325. doi:10.1103/PhysRevB.35.9322.
  • Randler RJ, Kolb DM, Ocko BM, et al. Electrochemical copper deposition on Au (100): a combined in situ STM and in situ surface X-ray diffraction study. Surf Sci. 2000;447:187–200. doi:10.1016/S0039-6028(99)01170-X.
  • Rahman A. Correlations in the motion of atoms in liquid argon. Phys Rev. 1964;136:405–411. doi:10.1103/PhysRev.136.A405.
  • Zhang T, Qi YH, Gu TK, et al. Structure and relaxation about the compound Cu3Au during rapid cooling process. J Alloys Comp. 2008;455:398–406. doi:10.1016/j.jallcom.2007.01.120.
  • Finney JL. Random packings and the structure of simple liquids. I. The geometry of random close packing. Proc R Soc Lond A. 1970;319:479–493. doi:10.1098/rspa.1970.0189.
  • Sheng HW, Luo WK, Alamgir FM, et al. Atomic packing and short-to-medium range order in metallic glasses. Nature. 2006;435:419–425. doi:10.1038/nature04421.
  • Chen G, Wang CJ, Zhang P. The non-equilibrium crystallization of Cu3Au with cooling rate near criticality. Comp Mater Sci. 2016;112:80–86. doi:10.1016/j.commatsci.2015.10.016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.