231
Views
41
CrossRef citations to date
0
Altmetric
Articles

Ion-specific equation coefficient version of the Abraham model for ionic liquid solvents: determination of coefficients for tributylethylphosphonium, 1-butyl-1-methylmorpholinium, 1-allyl-3-methylimidazolium and octyltriethylammonium cations

, , &
Pages 358-385 | Received 30 Jun 2016, Accepted 25 Jul 2016, Published online: 08 Aug 2016

References

  • Asuman C, Yu G, Guan Y, et al. Extractive denitrogenation of fuel oils with dicyanamide-based ionic liquids. Green Chem. 2011;13:3300–3305. doi:10.1039/c1gc15747g.
  • Asumana C, Haque R, Yu L, et al. Desulfurization of real fuel oils by extraction with ionic liquids. Sep SciTechnol. 2013;48:2582–2588. doi:10.1080/01496395.2013.804559.
  • Gao H, Li Y, Wu Y, et al. Extractive desulfurization of fuel using 3-methylpyridinium-based ionic liquids. Energy Fuels. 2009;23:2690–2694. doi:10.1021/ef900009g.
  • Farzin Najad N, Shams Soolan E, Adibi M, et al. Imidazolium-based alkylsulfate ionic liquids and removal of sulfur content from model of gasoline. Petrol Sci Technol. 2013;31:472–480. doi:10.1080/10916466.2010.481651.
  • Anantharaj R, Banerjee T. COSMO-RS-based screening of ionic liquids as green solvents in denitrification studies. Ind Eng Chem Res. 2010;49:8705–8725. doi:10.1021/ie901341k.
  • Banerjee T, Anantharaj R. COSMO-RS based predictions for the desulphurization of diesel oil using ionic liquids: effect of cation and anion combination. Fuel Process Technol. 2010;92:39–52.
  • Oliveira LMC, Ribeiro FRG, Alcantara ML, et al. High pressure vapor-​liquid equilibria for binary methane and protic ionic liquid based on propionate anions. Fluid Phase Equilibr. Forthcoming 2016. doi:10.1016/j.fluid.2016.03.021.
  • Singh ZV, Cowan MG, McDanel WM, et al. Determination and optimization of factors affecting CO2​/CH4 separation performance in poly(ionic liquid)​-​ionic liquid-​zeolite mixed-​matrix membranes. J Membrane Sci. 2016;509:149–155. doi:10.1016/j.memsci.2016.02.034.
  • Liu X, He M, Lv N, et al. Selective absorption of CO2 from H2, O2 and N2 by 1-​hexyl-​3-​methylimidazolium tris(pentafluoroethyl)​trifluorophosphate. J Chem Thermodyn. 2016;97:48–54. doi:10.1016/j.jct.2016.01.013.
  • Mohshim DF, Mukhtar H, Man Z. Comparison study of emim [Tf2N] and emim [CF3SO3] effects on polyethersulfone membrane for CO2​/CH4 separation. J Appl Sci. 2014;14:1083–1087. doi:10.3923/jas.2014.1083.1087.
  • Cowan MG, Gin DL, Noble RD. Poly(ionic liquid)​/ionic liquid ion-​gels with high ‘free’ ionic liquid content: platform membrane materials for CO2​/light gas separations. Acc Chem Res. 2016;49:724–732. doi:10.1021/acs.accounts.5b00547.
  • Wang G, Hou W, Xiao F, et al. Low-viscosity triethylbutylammonium acetate as a task-specific ionic liquid for reversible CO2 absorption. J Chem Eng Data. 2011;56:1125–1133. doi:10.1021/je101014q.
  • Huang K, Wang G-N, Dai Y, et al. Dicarboxylic acid salts as task-specific ionic liquids for reversible absorption of SO2 with a low enthalpy change. RSC Adv. 2013;3:16264–16269. doi:10.1039/c3ra42256a.
  • Gimeno MP, Mayoral MC, Andres JM. Influence of temperature on CO2 adsorption rate and capacity in ionic liquids. Energy Fuels. 2013;27:3928–3935. doi:10.1021/ef401063r.
  • Karousos DS, Kouvelos E, Sapalidis A, et al. Novel inverse supported ionic liquid absorbents for acidic gas removal from flue gas. Ind Eng Chem Res. 2016;55:5748–5762. doi:10.1021/acs.iecr.6b00664.
  • Bates ED, Mayton R, Ntai I, et al. CO2 capture by a task-specific ionic liquid. J Am Chem Soc. 2002;124:926–927. doi:10.1021/ja017593d.
  • Li X, Zhang L, Zheng Y, et al. Effect of SO2 on CO2 absorption in flue gas by ionic liquid 1-ethyl-3-methylimidazolium acetate. Ind Eng Chem Res. 2015;54:8569–8578. doi:10.1021/acs.iecr.5b02208.
  • Chen K, Lin W, Yu X, et al. Designing of anion-functionalized ionic liquids for efficient capture of SO2 from flue gas. AIChE J. 2015;61:2028–2034. doi:10.1002/aic.14793.
  • Domanska U, Wlazlo M, Karpinska M. Activity coefficients at infinite dilution of organic solvents and water in 1-butyl-3-methylimidazolium dicyanamide. A literature review of hexane/hex-1-ene separation. Fluid Phase Equilibr. 2016;417:50–61. doi:10.1016/j.fluid.2016.02.004.
  • Wlazlo M, Karpinska M, Domanska U. A 1-alkylcyanopyridinium-based ionic liquid in the separation processes. J Chem Thermodyn. 2016;97:253–260. doi:10.1016/j.jct.2016.01.017.
  • Ayad A, Mutelet F, Negadi A, et al. Activity coefficients at infinite dilution for organic solutes dissolved in two 1-​alkylquinuclidinium bis(trifluoromethylsulfonyl)imides bearing alkyl side chains of six and eight carbons. J Mol Liq. 2016;215:176–184. doi:10.1016/j.molliq.2015.12.029.
  • Ayad A, Mutelet F, Abumandour E-S, et al. Activity coefficients at infinite dilution of organic solutes in methylphosphonate based ionic liquids using gas-​liquid chromatography. J Chem Thermodyn. 2015;86:116–122. doi:10.1016/j.jct.2015.02.023.
  • Wytze Meindersma G, Galan Sanchez LM, Hansmeier AR, et al. Application of task-specific ionic liquids for intensified separations. Monatsh Chem. 2007;138:1125–1136. doi:10.1007/s00706-007-0757-4.
  • Revelli A-L, Mutelet F, Jaubert J-N. Prediction of partition coefficients of organic compounds in ionic liquids: use of a linear solvation energy relationship with parameters calculated through a group contribution method. Ind Eng Chem Res. 2010;49:3883–3892. doi:10.1021/ie901776z.
  • Grubbs LM, Ye S, Saifullah M, et al. Correlations for describing gas-to-ionic liquid partitioning at 323 K based on ion-specific equation coefficient and group contribution versions of the Abraham model. Fluid Phase Equilibr. 2011;301:257–266. doi:10.1016/j.fluid.2010.12.005.
  • Mutelet F, Ortega-Villa V, Moise J-C, et al. Prediction of partition coefficients of organic compounds in ionic liquids using a temperature-dependent linear solvation energy relationship with parameters calculated through a group contribution method. J Chem Eng Data. 2011;56:3598–3606. doi:10.1021/je200454d.
  • Grubbs LM, Acree WE Jr, Abraham MH. Correlation of enthalpies of solvation of organic vapors and gases in ionic liquid solvents using a group contribution version of the Abraham solvation parameter model. Thermochim Acta. 2010;511:96–101. doi:10.1016/j.tca.2010.07.030.
  • Lazzus JA, Pulgar-Villarroel G. A group contribution method to estimate the viscosity of ionic liquids at different temperatures. J Mol Liq. 2015;209:161–168. doi:10.1016/j.molliq.2015.05.030.
  • Gharagheizi F, Ilani-Kashkouli P, Mohammadi AH, et al. Development of a group contribution method for determination of viscosity of ionic liquids at atmospheric pressure. Chem Eng Sci. 2012;80:326–333. doi:10.1016/j.ces.2012.06.045.
  • Lazzus JA. A group contribution method to predict the thermal conductivity λ(T,​P) of ionic liquids. Fluid Phase Equilibr. 2015;405:141–149. doi:10.1016/j.fluid.2015.07.015.
  • Wu K-J, Zhao C-X, He C-H. Development of a group contribution method for determination of thermal conductivity of ionic liquids. Fluid Phase Equilibr. 2013;339:10–14. doi:10.1016/j.fluid.2012.11.024.
  • Nancarrow P, Lewis M, Abou Chacra L. Group contribution methods for estimation of ionic liquid heat capacities: critical evaluation and extension. Chem Eng Technol. 2015;38:632–644. doi:10.1002/ceat.v38.4.
  • Albert J, Mueller K. A group contribution method for the thermal properties of ionic liquids. Ind Eng Chem Res. 2014;53:17522–17526. doi:10.1021/ie503366p.
  • Mueller K, Albert J. Contribution of the individual ions to the heat capacity of ionic liquids. Ind Eng Chem Res. 2014;53:10343–10346. doi:10.1021/ie501575n.
  • Gharagheizi F, Ilani-Kashkouli P, Mohammadi AH. Group contribution model for estimation of surface tension of ionic liquids. Chem Eng Sci. 2012;78:204–208. doi:10.1016/j.ces.2012.05.008.
  • Paduszynski K, Domanska U. A new group contribution method for prediction of density of pure ionic liquids over a wide range of temperature and pressure. Ind Eng Chem Res. 2012;51:591–604. doi:10.1021/ie202134z.
  • Abraham MH. Scales of solute hydrogen-​bonding: their construction and application to physicochemical and biochemical processes. Chem Soc Rev. 1993;22:73–83. doi:10.1039/cs9932200073.
  • Sprunger L, Clark M, Acree WE Jr, et al. Characterization of room temperature ionic liquids by the Abraham model with cation-specific and anion-specific equation coefficients. J Chem Inf Model. 2007;47:1123–1129. doi:10.1021/ci7000428.
  • Sprunger LM, Proctor A, Acree WE Jr, et al. LFER Correlations for room temperature ionic liquids: separation of equation coefficients into individual cation-specific and anion-specific contributions. Fluid Phase Equilibr. 2008;265:104–111. doi:10.1016/j.fluid.2008.01.006.
  • Sprunger LM, Gibbs J, Proctor A, et al. Linear free energy relationship correlations for room temperature ionic liquids: revised cation-specific and anion-specific equation coefficients for predictive applications covering a much larger area of chemical space. Ind Eng Chem Res. 2009;48:4145–4154. doi:10.1021/ie801898j.
  • Stephens TW, Chou V, Quay AN, et al. Thermochemical investigations of solute transfer into ionic liquid solvents: updated Abraham model equation coefficients for solute activity coefficient and partition coefficient predictions. Phys Chem Liq. 2014;52:488–518. doi:10.1080/00319104.2014.880114.
  • Lu A, Jiang B, Cheeran S, et al. Abraham model ion-specific equation coefficients for the 1-butyl-2,3-dimethyimidazolium and 4-cyano-1-butylpyridinium cations calculated from measured gas-to-liquid partition coefficient data. Phys Chem Liq. 2016;1–20. Ahead of Print. doi:10.1080/00319104.2016.1191634.
  • Twu P, Anderson JL, Stovall DM, et al. Determination of the solubilising character of 2-methoxyethyl(dimethyl)-ethylammonium tris(pentafluoroethyl)trifluorophosphate based on the Abraham solvation parameter model. Phys Chem Liq. 2016;54:110–126. doi:10.1080/00319104.2015.1068665.
  • Mutelet F, Alonso D, Stephens TW, et al. Infinite dilution activity coefficients of solutes dissolved in two trihexyl(tetradecyl)​phosphonium ionic liquids. J Chem Eng Data. 2014;59:1877–1885. doi:10.1021/je500050p.
  • Stephens TW, Hart E, Kuprasertkul N, et al. Abraham model correlations for describing solute transfer into ionic liquid solvents: calculation of ion-specific equation coefficients for the 4,​5-​dicyano-​2-​(trifluoromethyl)​imidazolide anion. Phys Chem Liq. 2014;52:777–791. doi:10.1080/00319104.2014.929949.
  • Wlazlo M, Gawkowska J, Domanska U. Separation based on limiting activity coefficients of various solutes in 1-allyl-3-methylimidazolium dicyanamide ionic liquid. Ind Eng Chem Res. 2016;55:5054–5062. doi:10.1021/acs.iecr.6b00942.
  • Wlazlo M, Karpinska M, Domanska U. Thermodynamics and selectivity of separation based on activity coefficients at infinite dilution of various solutes in 1-allyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ionic liquid. J Chem Thermodyn. Forthcoming 2016.
  • Wlazlo M, Domanska U. Gamma infinity data for the separation of water-butan-1-ol mixtures using ionic liquids. Sep Purification Technol. 2016;162:162–170. doi:10.1016/j.seppur.2016.02.015.
  • Krolikowska M, Orawiec M. Activity coefficients at infinite dilution of organic solutes and water in tributylethylphosphonium diethylphosphate using gas-liquid chromatography: thermodynamic properties of mixtures containing ionic liquids. J Chem Eng Data. 2016;61:1793–1802. doi:10.1021/acs.jced.5b00980.
  • Domanska U, Lukoshko EV. Thermodynamics and activity coefficients at infinite dilution for organic solutes and water in the ionic liquid 1-butyl-1-methylmorpholinium tricyanomethanide. J Chem Thermodyn. 2014;68:53–59. doi:10.1016/j.jct.2013.08.030.
  • Abraham MH, Acree WE Jr, Brumfield M, et al. Deduction of physicochemical properties from solubilities: 2,​4-​dihydroxybenzophenone, biotin, and caprolactam as examples. J Chem Eng Data. 2015;60:1440–1446. doi:10.1021/je501140p.
  • Schmidt A, Grover D, Zettl H, et al. Determination of Abraham model solute descriptors for isophthalic acid from experimental solubility data in organic solvents at 298 K. Phys Chem Liq. 2016;1–11. Ahead of Print. doi:10.1080/00319104.2016.1149178.
  • Brumfield M, Wadawadigi A, Kuprasertkul N, et al. Determination of Abraham model solute descriptors for three dichloronitrobenzenes from measured solubilities in organic solvents. Phys Chem Liq. 2015;53:163–173. doi:10.1080/00319104.2014.972555.
  • Holley K, Acree WE Jr, Abraham MH. Determination of Abraham model solute descriptors for 2-ethylanthraquinone based on measured solubility ratios. Phys Chem Liq. 2011;49:355–365. doi:10.1080/00319101003646553.
  • Abraham MH, Ibrahim A, Zissimos AM. Determination of sets of solute descriptors from chromatographic measurements. J Chromatogr A. 2004;1037:29–47. doi:10.1016/j.chroma.2003.12.004.
  • Zissimos AM, Abraham MH, Du CM, et al. Calculation of Abraham descriptors from experimental data from seven HPLC systems; evaluation of five different methods of calculation. J Chem Soc Perkin Trans 2. 2002;2001–2010. doi:10.1039/b206927j.
  • Zissimos AM, Abraham MH, Barker MC, et al. Calculation of Abraham Descriptors from solvent-water partition coefficients in four different systems; evaluation of different methods of calculation. J Chem Soc Perkin Trans 2. 2002;470–477. doi:10.1039/b110143a.
  • Krolikowski M, Krolikowska M. The study of activity coefficients at infinite dilution for organic solutes and water in 1-butyl-4-methylpyridinium dicyanamide, [B4MPy][DCA] using GLC. J Chem Thermodyn. 2014;68:138–144. doi:10.1016/j.jct.2013.09.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.