89
Views
5
CrossRef citations to date
0
Altmetric
Articles

Dielectric relaxation of Tripropylene glycol–water mixture using time domain reflectometry

, &
Pages 410-418 | Received 24 Jun 2016, Accepted 26 Jul 2016, Published online: 10 Aug 2016

References

  • Grzybowska K, Grzybowski A, Pawlus S, et al. Dielectric relaxation processes in water mixtures of tripropylene glycol. J Chem Phy. 2005;123:204506. doi:10.1063/1.2128704.
  • Jakobsen B, Niss K, Olsenc NB. Dielectric and shear mechanical alpha and beta relaxations in seven glass-forming liquids. J Chem Phy. 2005;123:234511. doi:10.1063/1.2136887.
  • Gainaru C, Hecksher T, Olsen NB, et al. Shear and dielectric responses of propylene carbonate, tripropylene glycol, and a mixture of two secondary amides. J Chem Phy. 2012;137:064508. doi:10.1063/1.4740236.
  • Sengwa RJ, Sankhla S. Dielectric properties of binary and ternary mixtures of alcohols: analysis of H-bonded interaction in complex systems. J Non-cryst Solids. 2007;353:4570–4574. doi:10.1016/j.jnoncrysol.2007.04.049.
  • George J, Sastry NV. Densities, dynamic viscosities, speeds of sound and relative permittivities for water + alkanediols (propane-1,2 and −1,3-diol and butane-1,2-,-1,3-,-1,4-, and −2,3-diol) at different temperatures. J Chem Eng Data. 2003;48:1529–1539. doi:10.1021/je0340755.
  • Mohapatra US, Roy GS, Dash SK. Dielectric studies of hydrogen bonded complexes of butanols with aniline and pyridine. J Mol Liq. 2003;106(1):69–79. doi:10.1016/S0167-7322(03)00021-7.
  • Mel’nichenko YB, Schüller J, Richert R, et al. Dynamics of hydrogen-bonded liquids confined to mesopores: a dielectric and neutron spectroscopy study. J Chem Phys. 1995;103:2016–2024. doi:10.1063/1.469728.
  • Cole RH, Berberian JG, Mashimo S, et al. Time domain reflection methods for dielectric measurements to 10 GHz. J Appl Phys. 1989;66:793–802. doi:10.1063/1.343499.
  • Bertolini D, Cassettari M, Salvetti G, et al. Time domain reflectometry to study the dielectric properties of liquids: some problems and solutions. Rev Sci Instrum. 1991;62:450–456. doi:10.1063/1.1142141.
  • Yoshihara A, Sato H, Kojima S. Brillouin scattering study of glass-forming propylene glycol. Jpn J Appl Phys. 1996;35:2925–2929. doi:10.1143/JJAP.35.2925.
  • Ko J-H, Kojima S. Brillouin scattering study on the polypropylene glycol by using a nonscanning Fabry-Perot interferometer. Phys Lett. 2004;321:141–146. doi:10.1016jphysleta.2003.12.016.
  • Bergman R, Börjesson L, Torell LM, et al. Dynamics around the liquid-glass transition in poly(propylene-glycol) investigated by wide-frequency-range light-scattering techniques. Phys Rev B. 1997;56:11619–11628. doi:10.1103/PhysRevB.56.11619.
  • Beevers MS, Elliott DA, Williams G. Dynamic Kerr-effect and dielectric relaxation studies of a poly(methylphenyl siloxane). Polymer. 1980;21:279–282. doi:10.1016/0032-3861(80)90269-4.
  • Bentefour EH, Glorieux C, Chirtoc M. Thermal relaxation of glycerol and propylene glycol studied by photothermal spectroscopy. J Thoen J Chem Phys. 2004;120:3726. doi:10.1063/1.1642613.
  • Köhler M, Lunkenheimer P, Goncharov Y, et al. Glassy dynamics in mono-, di-, and tri-propylene glycol: from the α- to the fast β-relaxation. J Non-Cryst Solids. 2010;356:529–534.
  • Sun T, Teja AS. Density, viscosity and thermal conductivity of aqueous solutions of Propylene glycol, Dipropylene glycol, and Tripropylene glycol between 290 K and 460 K. J Chem Eng Data. 2004;49:1311–1317. doi:10.1021/je049960h.
  • Mashalkar GV, Chalikwar PA, Kumbharkhane AC. Temperature-dependent dielectric relaxation study of polyhydric alcohols (propane-1,3 and 1,2-diol) using a TDR technique. Phy Chem Liquids. 2014;53(3):307–317. doi:10.1080/00319104.2014.961190.
  • Khirade PW, Chaudhari A, Shinde JB, et al. Static dielectric constant and relaxation time measurements on binary mixtures of dimethyl sulfoxide with ethanol, 2-ethoxyethanol, and propan-1-ol at 293, 303, 313, and 323K. J Chem Eng Data. 1999;44:879–881. doi:10.1021/je980118j.
  • Kumbharkhane AC, Puranik SM, Mehrotra SC. Dielectric relaxation of tert-butyl alcohol-water mixtures using a time-domain technique. J Chem Soc Faraday Trans. 1991;87:1569–1573. doi:10.1039/ft9918701569.
  • Kaatze U. Microwave dielectric properties of liquids. Radiat Phys Chem. 1995;45:549–566. doi:10.1016/0969-806X(94)00070-Z.
  • Buchner R, Barthel J, Stauber J. The dielectric relaxation of water between 0°C and 35°C. Chem Phys Lett. 1999;306(1):57–63. doi:10.1016/S0009-2614(99)00455-8.
  • Sengwa RJ. Comparative dielectric study of mono, di and trihydric alcohols. Indian J Pure App Phys. 2003;41:295–300.
  • Lide DR, Ed. CRC handbook of chemistry and physics. 87th ed. Boca Raton (FL): Taylor and Francis; 2007.
  • Hill NE, Vaughan WE, Price AH, et al. Dielectric properties and molecular behavior. London: Van Nostrand Reinhold Co.; 1969.
  • Kirkwood JG. The dielectric polarization of polar liquids. J Chem Phys. 1939;7:911–919. doi:10.1063/1.1750343.
  • Bruggeman DAG. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann Phys (Leipzig). 1935;416:636–664. doi:10.1002/andp.19354160705.
  • Puranik SM, Kumbharkhane AC, Mehrotra SC. The static permittivity of binary mixtures using an improved Bruggeman model. J Mol Liq. 1994;59:173–177. doi:10.1016/0167-7322(93)00665-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.