81
Views
1
CrossRef citations to date
0
Altmetric
Articles

Variational quantum Monte Carlo results for N2, N2+ and C2 utilising the four-dimensional density of Bright Wilson

&
Pages 281-290 | Received 11 Aug 2016, Accepted 19 Aug 2016, Published online: 03 Sep 2016

References

  • Sukumar N, editor. A matter of density: exploring the electron density concept in the chemical, biological, and materials sciences. Hoboken (NJ): Wiley; 2012.
  • Stalke D, editor. Electron density and chemical bonding II: theoretical charge density studies. Berlin: Springer; 2012.
  • Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev. 1964;136:B864–B871. DOI:10.1103/PhysRev.136.B864
  • Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev. 1965;140:A1133–A1138. DOI:10.1103/PhysRev.140.A1133
  • Runge E, Gross EKU. Density-functional theory for time-dependent systems. Phys Rev Lett. 1984;52:997–1000. DOI:10.1103/PhysRevLett.52.997
  • Jones RO. Density functional theory: its origins, rise to prominence, and future. Rev Mod Phys. 2015;87:897–923. DOI:10.1103/RevModPhys.87.897
  • Bader RFW, MacDougall PJ, Lau CDH. Bonded and nonbonded charge concentrations and their relation to molecular geometry and reactivity. J Am Chem Soc. 1984;106:1594–1605. DOI:10.1021/ja00318a009
  • Corts-Guzman F, Bader RFW. Complementarity of QTAIM and MO theory in the study of bonding in donor-acceptor complexes. Coord Chem Rev. 2005;249:633–662. DOI:10.1016/j.ccr.2004.08.022
  • Becke AD, Edgecombe KE. A simple measure of electron localization in atomic and molecular systems. J Chem Phys. 1990;92:5397–5403. DOI:10.1063/1.458517
  • Amovilli C, Floris FM, Grisafi A. Localized polycentric orbital basis set for quantum monte carlo calculations derived from the decomposition of Kohn–Sham optimized orbitals. Computation. 2016;4:10. DOI:10.3390/computation4010010
  • Bright Wilson E Jr. Four dimensional electron density function. J Chem Phys. 1962;36:2232–2233. DOI:10.1063/1.1732864
  • Filippi C, Umrigar CJ. Multiconfiguration wave functions for quantum Monte Carlo calculations of first-row diatomic molecules. J Chem Phys. 1996;105:213–226. DOI:10.1063/1.471865
  • Giannelli L, Amovilli C. Low-lying adiabatic electronic states of NO: a QMC study. Croat Chem Acta. 2013;86:477–484. DOI:10.5562/cca2302
  • Umrigar CJ, Toulouse J, Filippi C, et al. Alleviation of the fermion-sign problem by optimization of many-body wave functions. Phys Rev Lett. 2007;98:110201. DOI:10.1103/PhysRevLett.98.110201
  • Gdanitz RJ. Accurately solving the electronic Schrödinger equation of atoms and molecules using explicitly correlated r(12)-MRCI: the ground state potential energy curve of N2. Chem Phys Lett. 1998;283:253–261. DOI:10.1016/S0009-2614(97)01392-4
  • Pedersen HB, Djuric N, Jensen MJ, et al. Electron collisions with diatomic anions. Phys Rev. 1999;60:2882–2899. DOI:10.1103/PhysRevA.60.2882
  • Fracchia F, Amovilli C. On the accuracy of pseudopotentials designed for QMC calculations on molecules of the first row atoms. Chem Phys Lett. 2012;521:20–25. DOI:10.1016/j.cplett.2011.11.041
  • CHAMP is a quantum Monte Carlo program package written by Umrigar CJ, Filippi C, Moroni S and collaborators.
  • Amovilli C, March NH. Electrostatic potentials at the nucleus for isoelectronic series of light atomic ions using the QMC method in relation to DFT. J Math Chem. 2015;53:1725–1732. DOI:10.1007/s10910-015-0514-6
  • Wang YA, Govind N, Carter EA. Orbital-free kinetic-energy functionals for the nearly free electron gas. Phys Rev B. 1998;58:13465–13471. DOI:10.1103/PhysRevB.58.13465
  • Thomas LH. The calculation of atomic fields. Math Proc Cambridge Phil Soc. 1927;23:542–548. DOI:10.1017/S0305004100011683
  • Fermi E. Un Metodo Statistico per la Determinazione di alcune Prioprietà dell’Atomo. Rend Accad Naz Lincei. 1927;6:602–607.
  • Teller E. On the stability of molecules in the Thomas-Fermi theory. Rev Mod Phys. 1962;34:627–631. DOI:10.1103/RevModPhys.34.627
  • von Weizsäcker CF. Zur Theorie der Kernmassen. Zeitschrift für Physik. 1935;96:431–458. DOI:10.1007/BF01337700
  • Deb BM, Chattaraj PK. Comments on the correlation between the Weizsäcker correction and the binding energy of diatomic molecules. Theor Chim Acta. 1986;69:259–263. DOI:10.1007/BF00526424
  • Piris M, March NH. Weizsäcker inhomogeneity kinetic energy term for the inhomogeneous electron liquid characterising some 30 homonuclear diatomic molecules at equilibrium and insight into Tellers theorem in Thomas-Fermi statistical theory. Phys Chem Liq. 2014;52:804–814. DOI:10.1080/00319104.2014.937865

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.