49
Views
0
CrossRef citations to date
0
Altmetric
Article

A comparative study of thermal pressure coefficients of liquid alkali metals using equation of state and dense fluid theory

&
Pages 629-639 | Received 21 Jul 2018, Accepted 06 Aug 2018, Published online: 23 Aug 2018

References

  • Fink JK, Leibowitz L. Thermodynamic and transport properties of sodium liquid and vapor. Reactor Engineering Division. Argonne National Laboratory; 1995. p. 235. (Report ANL/RE-95/2).
  • Cohen M, Turnbull D. Molecular transport in liquids and glasses. J Chem Phys. 1959;31:1164–1168.
  • Malcolm GN, Ritchie GLD. The thermal pressure coefficient and the entropy of melting at constant volume of polyethylene oxide. J Phys Chem. 1962;66:852–854.
  • Few GA, Rigby M. Thermal pressure coefficient and internal pressure of 2,2-dimethylpropane. J Phys Chem. 1975;79:1543–1546.
  • Jacquemin J, Nancarrow P, Rooney DW, et al. Prediction of ionic liquid properties iI. Volumetric properties as a function of temperature and pressure. J Chem Eng Data. 2008;53:2133–2143.
  • Kirkwood JG, Buff FP. The statistical mechanical theory of surface tension. J Chem Phys: Condens Matter. 1949;17:338.
  • Fowler RH. A tentative statistical theory of Macleod’s equation for surface tension, and the parachor. Proc R Soc A. 1937;159:229.
  • Longuet‐Higgins HC, Pople JA. Transport properties of a dense fluid of hard spheres. J Chem Phys. 1956;25:884.
  • Farzi N, Safari R, Kermanpour F. Application of LIR in prediction of surface tension and its temperature coefficient of liquid alkali metals. J Mol Liq. 2008;137:159–164.
  • Nikoofard H, Hajiashrafi L. Studying structural properties of rubidium and cesium liquid metals using an effective hard-core Yukawa potential. Fluid Phase Equilibria. 2016;409:113–118.
  • Bahadori M, Akbari Z. Prediction of the surface tension of cesium in the whole liquid range. Phys Chem Liq. 2016;54:454–461.
  • Bohdansky J, Schins HEJ. The surface tension of the alkali metals. J Inorg Nucl Chem. 1967;29:2173–2179.
  • Zykova-Timan T, Ceresoli D, Tartaglino U, et al. Why are alkali halide surfaces not wetted by their own melt. Phys Rev Lett. 2005;94:176105.
  • Mahan GD. Surface energy of jellium metal. Phys Rev B. 1975;12:5585.
  • Wang ZQ, Stroud D. Surface entropy of liquids via a direct Monte Carlo approach: application to liquid Si. Phys Rev A. 1990;41:4582.
  • Evans R. A pseudo-atom theory for the surface tension of liquid metals. J Phys C: Solid State Phys. 1974;7:2808.
  • Lang ND, Khon W. Theory of metal surfaces: charge density and surface energy. Phys Rev B. 1970;1:4555.
  • Goharshadi EK, Morsali A, Abbaspor M. New regularities and an equation of state for liquids. J Nucl Mater. 2006;348:40–44.
  • Goharshadi EK, Berenji AR. A new equation of state for predicting the thermodynamic properties of liquid alkali metals. J Nucl Mater. 2006;348:40–44.
  • Moosavi M. Extension of GMA equation of state to long-chain alkanes using group contribution method. Ind Eng Chem Res. 2010;49:6662–6669.
  • Moosavi M. Extension of GCM-GMA equation to long chain primary, secondary and tertiary alcohols, primary and secondary amines, and ketones using group contribution method. Fluid Phase Equilibria. 2011;310:63–73.
  • Moosavi M. Prediction of thermodynamic properties of long chain 1-carboxylic acids and esters using a group contribution equation. Fluid Phase Equilibria. 2012;316:122–131.
  • Mansouri SS, Farsi A, Shadravan V, et al. Density calculation of liquid organic compounds using a simple equation of state up to high pressures. J Mol Liq. 2011;160:94–102.
  • Moosavi M, Sabzevari S. A new regularity and an equation of state for alkali metals over the whole liquid range. Fluid Phase Equilibria. 2012;329:63–70.
  • Winter R, Hensel F, Bodensteiner T, et al. Structure and forces in expanded liquid cesium. J Phys Chem. 1988;92:7171–7174.
  • Winter R, Pilgrim C, Hensel F, et al. Structure and dynamics of expanded liquid alkali metals. J Non-Crystal Solids. 1993;156:9–14.
  • Ghatee MH, Boushehri A. An analytical equation of state for molten alkali metals. Int J Thermophys. 1995;16:1429–1438.
  • Munejiri S, Shimojo F, Hoshino K, et al. An analytical equation of state for molten alkali metals. J Non-Cryst Solids. 1996;205:278–281.
  • Croxton CA. Introduction to liquid state physics. New York: Wiley; 1978. p. 83–93. Chapter 3.
  • Malijevky A, Veverka J. New equations of state for pure and binary hard-sphere fluids. Phys Chem Chem Phys. 1999;1:4267–4270.
  • Song Y, Mason EA. Statistical-mechanical basis for accurate analytical equations of state for fluids. Fluid Phase Equilibria. 1992;75:105–115.
  • Ihm G, Song Y, Mason EA. A new strong principle of corresponding states for nonpolar fluids. J Chem Phys. 1991;94:3839.
  • Akbari F, Alavianmehr MM, Behjatmanesh Ardakani R, et al. A new equation of state for metal alloys. Phys Chem Liq. 2017;55:153–164.
  • Vargaftik NB, Kozhevnikov VF, Alekseev VA. An experimental study of the equations of state of liquid alkali metals II. J Eng Phys. 1978;35:1415–1422.
  • Vargaftik NB, Alekseev VA, Kozhevnikov VF, et al. Equation of state of the liquid alkali metals I. J Eng Phys. 1978;35:1361–1369.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.