85
Views
1
CrossRef citations to date
0
Altmetric
Articles

Study of electronic structure in molten metals by CHS reference system

&
Pages 500-515 | Received 17 Jan 2019, Accepted 22 Apr 2019, Published online: 19 May 2019

References

  • Waseda Y. The structure of non-crystalline materials: liquids and amorphous solids. New York (NY): McGraw-Hill; 1980.
  • Vora AM. Electrical transport properties of liquid Rb1-XCsX binary alloys. J Adv Phys. 2015;4(2):164–168.
  • Vora AM. Electrical transport properties of K-based alkali liquid binary alloys. Inter Lett Chem Phys Astro. 2015;54:56–72.
  • Vora AM. Study of electrical transport properties of liquid semiconductor binary alloys using pseudopotential theory. Phys Chem Liq. 2011;49(4):493–507.
  • Vora AM, Gajjar PN. Study of electronic structure of liquid Pb. AIP Conf Proc. 2018;1951:020005(1)–020005(4).
  • Vora AM. Study of electron dispersion curves in liquid alkalis. Phys Chem Liq. 2009;4(6):663–672.
  • Vora AM. Electron dispersion in liquid alkali and their alloys. Commun Theor Phys. 2010;54(1):159–166.
  • Srivastava SK. Model pseudopotentials and electronic properties of non-transition metals. J Phys Chem Sol. 1975;36(9):993–1004.
  • Srivastava SK, Sharma PK. Electron dispersion in simple metals. Physica. 1971;54(3):473–476.
  • Thakur J. Fermi energy, density of states, and electronic properties of alkali metals exchange and correlation effects. Phys Stat Sol (B). 1980;100:103–109.
  • Gajjar PN, Thakore BY, Jani AR. Electron dispersion in liquid alkali metals. Acta Phys Polo A. 1998;94(1):33–40.
  • Kumar A, Ahuja DP. A first-principle study of Cd-Zn binary alloy. Armenian J Phys. 2010;3(3):203–217.
  • Kumar A, Ahuja DP. Anomalous behavior of electronic transport properties in Cu-Sn liquid binary alloy. Armenian J Phys. 2012;5(1):21–24.
  • Gajjar PN, Thakore BY, Jani AR. Asphericity in the Fermi surface of aluminium and lead. Solid State Commun. 1996;100(11):785–789.
  • Gajjar PN, Patel MH, Jani AR. Asphericity in the Fermi surface and Fermi energy of Li1−xBx (B = Na, K, Rb and Cs) substitutional alloys. Comp Mater Sci. 2008;42(2):316–321.
  • Patel MH, Vora AM, Gajjar PN, et al. Fermi energy and fermi surface of Cs-K, Cs-Rb and Rb-K binary systems. Physica B. 2001;304(1–4):152–158.
  • Patel MH, Vora AM, Gajjar PN, et al. Asphericity in the fermi surface and fermi energy of Na-K, Na-Rb and Na-Cs binary alloys. Commun Theor Phys. 2002;38(3):365–369.
  • Ashcroft NW. Electron-ion pseudopotentials in the alkali metals. J Phys C: Solid State Phys. 1968;1:232–243.
  • Abarenkov IV, Heine V. The model potential for positive ions. Phil Mag. 1965;12(117):529–537.
  • Chan T, Ballentine LE. The energy distribution of electronic states in a liquid metal. Phys Chem Liq. 1971;2(3):165–179.
  • Chan T, Ballentine LE. Electronic structure of liquid metals from nonlocal energy-dependent model potentials. Canadian J Phys. 1972;50(8):813–820.
  • Edwards SF. The electronic structure of liquid metals. Proc Roy Soc (London) A. 1962;267:518–540.
  • Ballentine LE. Calculation of the electronic structure of liquid metals. Can J Phys. 1966;44(11):2533–2552.
  • Watabe M, Tanaka M. A note on the electronic states in liquid metals. Prog Theor Phys. 1964;31(4):525–537.
  • Shaw RW, Smith NV. Model-potential calculation of the density of states in liquid and solid lithium, cadmium, and indium. Phys Rev. 1969;178(3):985–997.
  • Lloyd P. Theory of condensed matter. Vienna: International Atomic Energy Agency; 1968. p. 639.
  • Jena P, Halder NC. Electronic and nuclear-magnetic-resonance properties of the liquid metals. Phys Rev B. 1972;6(6):2131–2138.
  • Harrison WA. Pseudopotential in the theory of metals. New York (NY): Benjamin Inc.; 1966.
  • Schneider T, Stoll E. Relations between lattice dynamics of simple metals and liquid state properties. Adv Phys. 1967;16(4):731–737.
  • Jena P, Halder NC. Role of effective mass in interpreting the knight shift in cadmium upon melting. Phys Rev Lett. 1971;26(17):1024–1027.
  • Stoll E, Szabo N, Schneider T. On the electron band structure of liquid metals. Physik Kondens Materie. 1971;12(3):279–286.
  • Halder NC. The properties of liquid metal. Takeuchi S, editor. London: Taylor and Francis; 1973. p. 337.
  • Ichikewa K. Density of electronic states in liquid alkali metals. Phil Mag. 1973;27(1):177–183.
  • Kumar M, Hemker MP. Density of states and fermi energy of simple metals. Phys Stat Sol (B). 1977;82(1):K29–K34.
  • Itami T, Shimoji M. Electronic structure of liquid metals and alloys. Phil Mag. 1972;25(1):229–239.
  • Ballentine LE, Chan T. The properties of liquid metal. Takeuchi S, editor. London: Taylor and Francis; 1973. p. 197.
  • Kuroha M, Suziki K. The electronic properties in liquid lithium. Phys Lett A. 1974;47(4):329–330.
  • Percus JK, Yevick GJ. Analysis of classical statistical mechanics by means of collective coordinates. Phys Rev. 1958;110(1):1–13.
  • Fiolhais C, Perdew JP, Armster SQ, et al. Dominant density parameters and local pseudopotentials for simple metals. Phys Rev B. 1995;51(20):14001–14011.
  • Singh HB, Holz A. Structure factor of liquid alkali metals. Phys Rev A. 1983;28(2):1108–1113.
  • Hubbard J. The description of collective motions in terms of many-body perturbation theory. II. The correlation energy of a free-electron gas. Proc R Soc (London) A. 1958;243:336–352.
  • Sham LJ. A calculation of the phonon frequencies in sodium. Proc R Soc (London) A. 1965;283:33–49.
  • Vashishta P, Singwi KS. Electron correlations at metallic densities. V Phys Rev B. 1972;6(6):875–887.
  • Taylor R. A simple, useful analytical form of the static electron gas dielectric function. J Phys F: Metal Phys. 1978;8(8):1699–1702.
  • Ichimaru S, Utsumi K. Analytic expression for the dielectric screening function of strongly coupled electron liquids at metallic and lower densities. Phys Rev B. 1981;24(12):7385–7388.
  • Farid B, Heine V, Engel GE, et al. Extremal properties of the Harris-Foulkes functional and an improved screening calculation for the electron gas. Phys Rev B. 1993;48(16):11602–11621.
  • Sarkar A, Sen DS, Haldar S, et al. Static local field factor for dielectric screening function of electron gas at metallic and lower densities. Mod Phys Lett B. 1998;12(16):639–648.
  • Nagy I. Analytic expression for the static local field correction function. J Phys C: Solid State Phys. 1986;19(22):L481–L484.
  • Harrison WA. Elementary electronic structure. Singapore: World Scientific; 1999.
  • Palmer RG, Weeks JD. Exact solution of the mean spherical model for charged hard spheres in a uniform neutralizing background. J Chem Phys. 1973;58(10):4171–4174.
  • Kittel C. Introduction to solid state physics. New Delhi: Wiley-India; 2018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.