79
Views
6
CrossRef citations to date
0
Altmetric
Articles

Volumetric and acoustic properties of ionic liquid, 1-hexyl-3-methylimidazolium bromide in 1-hexanol, 1-heptanol and 1-octanol at T = (298.15–328.15) K

, , , , ORCID Icon & ORCID Icon
Pages 545-558 | Received 27 Apr 2019, Accepted 26 May 2019, Published online: 04 Jun 2019

References

  • Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev. 1999;99:2071–2084.
  • Wasserscheid P, Keim W. Ionic liquids-new “solutions” for transition metal catalysis. Angew Chem Int Ed. 2000;39:3772–3789.
  • Shekaari H, Zafarani-Moattar MT, Mirheydari SN. Volumetric, ultrasonic and viscometric studies of aspirin in the presence of 1-octyl-3-methylimidazolium bromide ionic liquid in acetonitrile solutions at T= (288.15–318.15) K. Z Phys Chem. 2016;230:1773–1799.
  • Wang J, Wang H, Zhang S, et al. Conductivities, volumes, fluorescence, and aggregation behavior of ionic liquids [C4mim][BF4] and [Cnmim] Br (n= 4, 6, 8, 10, 12) in aqueous solutions. J Phys Chem B. 2007;111:6181–6188.
  • Kragl U, Eckstein M, Kaftzik N. Enzyme catalysis in ionic liquids. Curr Opin Biotechnol. 2002;13:565–571.
  • Seddon KR, Stark A, Torres M-J. Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure App Chem. 2000;72:2275–2287.
  • Pal A, Gaba R. Densities, excess molar volumes, speeds of sound and isothermal compressibilities for {2-(2-hexyloxyethoxy) ethanol + n-alkanol} systems at temperatures between (288.15 and 308.15) K. J Chem Thermodyn. 2008;40:750–758.
  • Domańska U, Zawadzki M, Lewandrowska A. Effect of temperature and composition on the density, viscosity, surface tension, and thermodynamic properties of binary mixtures of N-octylisoquinolinium bis {(trifluoromethyl) sulfonyl} imide with alcohols. J Chem Thermodyn. 2012;48:101–111.
  • Zafarani-Moattar MT, Shekaari H. Volumetric and speed of sound of ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate with acetonitrile and methanol at T= (298.15 to 318.15) K. J Chem Eng Data. 2005;50:1694–1699.
  • Singh S, Aznar M, Deenadayalu N. Densities, speeds of sound, and refractive indices for binary mixtures of 1-butyl-3-methylimidazolium methyl sulphate ionic liquid with alcohols at T= (298.15, 303.15, 308.15, and 313.15) K. J Chem Thermodyn. 2013;57:238–247.
  • Arce A, Rodil E, Soto A. Physical and excess properties for binary mixtures of 1-methyl-3-octylimidazolium tetrafluoroborate, [Omim][BF4], ionic liquid with different alcohols. J Solution Chem. 2006;35:63–78.
  • González EJ, González B, Calvar N, et al. Physical properties of binary mixtures of the ionic liquid 1-ethyl-3-methylimidazolium ethyl sulfate with several alcohols at T= (298.15, 313.15, and 328.15) K and atmospheric pressure. J Chem Eng Data. 2007;52:1641–1648.
  • Gonzalez EJ, Gonzalez B, Macedo EA. Thermophysical properties of the pure ionic liquid 1-butyl-1-methylpyrrolidinium dicyanamide and its binary mixtures with alcohols. J Chem Eng Data. 2013;58:1440–1448.
  • Requejo PF, González EJ, Macedo EA, et al. Effect of the temperature on the physical properties of the pure ionic liquid 1-ethyl-3-methylimidazolium methylsulfate and characterization of its binary mixtures with alcohols. J Chem Thermodyn. 2014;74:193–200.
  • Kurnia KA, Mutalib MIA. Densities and viscosities of binary mixture of the ionic liquid bis (2-hydroxyethyl) ammonium propionate with methanol, ethanol, and 1-propanol at T=(293.15, 303.15, 313.15, and 323.15) K and at P= 0.1 MPa. J Chem Eng Data. 2010;56:79–83.
  • Calvar N, González EJ, Domínguez Á, et al. Acoustic, volumetric and osmotic properties of binary mixtures containing the ionic liquid 1-butyl-3-methylimidazolium dicyanamide mixed with primary and secondary alcohols. J Chem Thermodyn. 2012;50:19–29.
  • Domańska U, Królikowska M. Density and viscosity of binary mixtures of {1-butyl-3-methylimidazolium thiocyanate + 1-heptanol, 1-octanol, 1-nonanol, or 1-decanol}. J Chem Eng Data. 2010;55:2994–3004.
  • Domańska U, Laskowska M. Effect of temperature and composition on the density and viscosity of binary mixtures of ionic liquid with alcohols. J Solution Chem. 2009;38:779–799.
  • Domańska U, Laskowska M. Phase equilibria and volumetric properties of (1-ethyl-3-methylimidazolium ethylsulfate + alcohol or water) binary systems. J Solution Chem. 2008;37:1271.
  • Pal A, Kumar B. Densities, speeds of sound and 1 H NMR spectroscopic studies for binary mixtures of 1-hexyl-3-methylimidazolium based ionic liquids with ethylene glycol monomethyl ether at temperature from T= (288.15–318.15) K. Fluid Phase Equilib. 2012;334:157–165.
  • Patel H, Vaid ZS, More UU, et al. Thermophysical, acoustic and optical properties of binary mixtures of imidazolium based ionic liquids + polyethylene glycol. J Chem Thermodyn. 2016;99:40–53.
  • Li J-G, Hu Y-F, Sun S-F, et al. Densities and dynamic viscosities of the binary system (water + 1-hexyl-3-methylimidazolium bromide) at different temperatures. J Chem Thermodyn. 2010;42:904–908.
  • Sadeghi R, Shekaari H, Hosseini R. Effect of alkyl chain length and temperature on the thermodynamic properties of ionic liquids 1-alkyl-3-methylimidazolium bromide in aqueous and non-aqueous solutions at different temperatures. J Chem Thermodyn. 2009;41:273–289.
  • Holbrey JD, Seddon KR. The phase behaviour of 1-alkyl-3-methylimidazolium tetrafluoroborates; ionic liquids and ionic liquid crystals. J Chem Soc Dalton Trans. 1999;13:2133–2140.
  • Roy MN, Sinha A, Sinha B. Excess molar volumes, viscosity deviations and isentropic compressibility of binary mixtures containing 1,3-dioxolane and monoalcohols at 303.15 K. J Solution Chem. 2005;34:1311–1325.
  • Wan Normazlan WMD, Sairi NA, Alias Y, et al. Composition and temperature dependence of density, surface tension, and viscosity of EMIM DEP/MMIM DMP + water + 1-propanol/2-propanol ternary mixtures and their mathematical representation using the Jouyban–acree model. J Chem Eng Data. 2014;59:2337–2348.
  • Khattab IS, Bandarkar F, Khoubnasabjafari M, et al. Density, viscosity, surface tension, and molar volume of propylene glycol + water mixtures from 293 to 323 K and correlations by the Jouyban-Acree model. Arabian J Chem. 2017;10:S71–S75.
  • Redlich O, Kister AT. Algebraic representation of thermodynamic properties and the classification of solutions. Ind Eng Chem. 1948;40:345–348.
  • Karlapudi S, Gardas R, Sivakumar K. FT-IR studies on excess thermodynamic properties of binary liquid mixtures o-chlorotoluene with 1-propanol, 1-butanol, 1-pentanol, 1-hexanol and 1-heptanol at different temperatures. J Chem Thermodyn. 2013;67:203–209.
  • Lorenzi LD, Fermeglia M, Torriano G. Densities and viscosities of 1, 1, 1-trichloroethane with 13 different solvents at 298.15 K. J Chem Eng Data. 1995;40:1172–1177.
  • Mozo I, García de la Fuente I, González JA, et al. Densities, excess molar volumes, speeds of sound at (293.15, 298.15, and 303.15) K and isentropic compressibilities at 298.15 K for 1-butanol, 1-pentanol, or 1-hexanol + dibutylether systems. J Chem Eng Data. 2008;53:857–862.
  • AlTuwaim MS, Alkhaldi KH, Al-Jimaz AS, et al. Comparative study of physico-chemical properties of binary mixtures of N, N-dimethylformamide with 1-alkanols at different temperatures. J Chem Thermodyn. 2012;48:39–47.
  • De Cominges BE, Piñeiro MM, Mosteiro L, et al. Temperature dependence of thermophysical properties of hexane + 1-hexanol. J Chem Eng Data. 2001;46:1206–1210.
  • ZoręBski E, Waligóra A. Densities, excess molar volumes, and isobaric thermal expansibilities for 1, 2-ethanediol + 1-butanol, or 1-hexanol, or 1-octanol in the temperature range from (293.15 to 313.15) K. J Chem Eng Data. 2008;53:591–595.
  • Zorębski E, Deć E. Speeds of sound and isentropic compressibilities for binary mixtures of 1, 2-ethanediol with 1-butanol, 1-hexanol, or 1-octanol in the temperature range from 293.15 to 313.15 K. J Mol Liq. 2012;168:61–68.
  • Sastry NV, Patel SR, Soni SS. Densities, speeds of sound, excess molar volumes, and excess isentropic compressibilities at T= (298.15 and 308.15) K for methyl methacrylate + 1-alkanols (1-butanol, 1-pentanol, and 1-heptanol) + cyclohexane, + benzene, + toluene, + p-xylene, and + ethylbenzene. J Chem Eng Data. 2010;56:142–152.
  • Romani L, Peleteiro J, Iglesias T, et al. Temperature dependence of the volumetric properties of binary mixtures containing alcohols (1-propanol, 1-pentanol, 1-heptanol) + heptane. J Chem Eng Data. 1994;39:19–22.
  • Dubey GP, Kumar K. Volumetric and viscometric properties of binary liquid mixtures of ethylene glycol monomethyl ether + 1-hexanol, 1-octanol, and 1-decanol at temperatures of T= (293.15, 298.15, 303.15, and 308.15) K. J Chem Eng Data. 2010;55:1700–1703.
  • Dubey GP, Sharma M. Study of molecular interactions in binary liquid mixtures of 1-octanol with n-hexane, n-octane, and n-decane using volumetric, viscometric, and acoustic properties. J Chem Thermodyn. 2008;40:991–1000.
  • George J, Sastry NV, Patel SR, et al. Densities, viscosities, speeds of sound, and relative permittivities for methyl acrylate + 1-alcohols (C1− C6) at T= (308.15 and 318.15) K. J Chem Eng Data. 2002;47:262–269.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.