95
Views
0
CrossRef citations to date
0
Altmetric
Articles

The pair correlation function of a multi-component plasma: theory and numerics

, &
Pages 138-147 | Received 24 Apr 2019, Accepted 24 Nov 2019, Published online: 02 Dec 2019

References

  • Slattery WL, Doolen GD, DeWitt HE. Improved equation of state for the classical one-component plasma. Phys Rev A. 1980;21:2087.
  • Hansen JP, Baus M Statistical mechanics of simple coulomb systems. Vol. 59 of Physics Reports. Amsterdam: North-Holland Publishing Company; 1980.
  • Liu C, Xu K. A unified gas kinetic scheme for continuum and rarefied flows v: multi- scale and multi-component plasma transport. Commun Comput Phys. 2017;22:1175–1223.
  • Igitkhanov Y. Modelling of multi-component plasma for tokes. KIT Scientific Report Nr.7564. Karlsruhe: KIT Scientific Publishing; 2011.
  • Zhdanov VM. Transport processes in multicomponent plasma. Plasma Phys Control Fusion. 2002;44:2283.
  • Lu D, Li Z, Sang H, et al. Delicate scale multipeak and flat-top structures of solitary waves in multi-component plasmas. Plasma Sci Technol. 2017;19:035002.
  • Valentini HB, Herrmann F. Boundary value problems for multi-component plasmas and a generalized bohm criterion. J Phys D Appl Phys. 1996;29:1175–1180.
  • Kovtun YV, Skibenko AI, Skibenko EI, et al. Study of multicomponent plasma parameters in the pulsed reflex discharge. Ukrainian J Phys. 2010;55(12):1269–1277.
  • Benbelgacem K, Douis S, Meftah M, et al. Effect of electron-ion coupling on the electric microfield distribution in plasmas. Contrib Plasma Phys. 2017;57:176–181.
  • Tokar MZ. Approaches to modeling of plasmas containing impurity at arbitrary concentration. Plasma Phys Control Fusion. 2016;58:025015.
  • Tokar MZ, Ding R, Koltunov M. Modelling of plasma behaviour in the vicinity of intensive impurity sources. Plasma Phys Control Fusion. 2010;52:075003.
  • Tokar MZ. Plasma behaviour near strong sources of impurities. Contrib Plasma Phys. 1996;36:250–254.
  • Hansen JP, McDonald IR. Theory of simple liquids. USA: Academic Press; 1976.
  • Weiss P. L’hypothèse du champ moléculaire et la propriété ferromagnétique. J Phys Theor Appl. 1907;6(1):661.
  • Kelbg G. Theorie des quanten-plasmas. Ann Phys Lpz. 1963;467:219–224.
  • Deutsch C. Nodal expansion in a real matter plasma. Phys Lett A. 1977;60:317.
  • Deutsch C, Gombert M, Minoo H. Classical modelization of symmetry effects in the dense high-temperature electron gas. Phys Lett A. 1978;66:381.
  • Rogers FJ. Analytic electron-ion effective potentials for z ≤ 55. Phys Rev A. 1981;23:1008.
  • Gombert MM, Minoo H, Deutsch C. Coulomb-like effective interactions for electrons with parallel spins at high temperature. Phys Rev A. 1984;29:940.
  • Perrot F, Dharma-wardana MWC. Spin-polarized electron liquid at arbitrary temperatures:exchange-correlation energies, electron-distribution functions, and the static response functions. Phys Rev B. 2000;62:16536.
  • Minoo H, Gombert M, Deutsch C. Temperature-dependent coulomb interactions in hydrogenic systems. Phys Rev A. 1981;23:924.
  • Jerri A. Introduction to integral equations with applications. New York, NY: Wiley; 1999.
  • Kress R. Linear integral equations. Berlin: Springer; 1999.
  • Wazwaz AM. Linear and nonlinear integral equations, methods and applications. Beijing: Higher Education Press and Springer; 2011.
  • Kashkar BH, Abbas SZ. Solution of initial value problem of bratu –type equation using modifications of homotopy perturbation method. Int J Comput Appl. 2017;162(5):44–49.
  • Bratu G. Sur les équations intégrales non linèaires. Bull De La S M F. 1914;42:113–142.
  • Karkowski J. Numerical experiments with the bratu equation in one, two and three dimensions. Comput Appl Math. 2013;32:231–244.
  • Hichar S, Guerfi A, Douis S, et al. Application of nonlinear bratu’s equation in two and three dimensions to electrostatics. Reports Math Phys. 2015;76:283–290.
  • Deleves L, Walsh J. Numerical solution of integral equations. Oxford: Clarendon Press; 1974.
  • Al-Mezel SAR, Al-Solamy FRM, Ansari QH. Fixed point theory, variational analysis, and optimization. 13:978-1-4822-2207-4. 6000. Broken Sound Parkway NW Boca Raton: CRC Press; 2014.
  • Ansorge R, Meis T, Tornig W. Iterative solution of nonlinear systems of equation. Germany: Proceedings of a Meeting held at Oberwolfach; 1982.
  • Verlet L. Computer ”experiments” on classical fluids. i. thermodynamical properties of lennard-jones molecules. Phys Rev. 1967;159:98–103.
  • Ladyzhenskaya OA. The method of finite differences. Vol. 49 of applied mathematical sciences. New York, NY: Springer Science and Business Media; 1985.
  • Graziani FR, Batista VS, Benedict LX, et al. Large-scale molecular dynamics simulations of dense plasmas: the cimarron project. High Energy Density Phys. 2012;8:105–131.
  • Alder BJ, Wainwright TE. Studies in molecular dynamics. i. general method. J Chem Phys. 1959;31:459-466.
  • Frenkel D, Smit B. Understanding molecular simulation: from algorithms to applications. 2nd ed. San Diego: Academic Press; 2001.
  • Huffman JD. Numerical methods for engineers and scientists. New York, NY: Marcel Dekker, INC; 2001.
  • Allen MP, Tildesley DJ. Computer simulation of liquids. Oxford: University Press; 1989.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.