282
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Updated Abraham model correlations for describing solute transfer into both 2-Pentanol and 3-Methyl-1-butanol based on much larger data sets

, , , , , , & show all
Pages 405-420 | Received 05 Jul 2023, Accepted 09 Jul 2023, Published online: 19 Jul 2023

References

  • Byrne FP, Jin S, Paggiola G, et al. Tools and techniques for solvent selection: green solvent selection guides. Sust Chem Proc. 2016;4(1):/7/1–/7/24. doi: 10.1186/s40508-016-0051-z
  • Alder CM, Hayler JD, Henderson RK, et al. Updating and further expanding GSK’s solvent sustainability guide. Green Chem. 2016;18(13):3879–3890. doi: 10.1039/C6GC00611F
  • Jimenez-Gonzalez C, Curzons AD, Constable DJC, et al. Expanding GSK’s solvent selection guide-application of life cycle assessment to enhance solvent selections. Clean Technol Environ Policy. 2005;7(1):42–50. doi: 10.1007/s10098-004-0245-z
  • Prat D, Wells A, Hayler J, et al. CHEM21 selection guide of classical- and less classical-solvents. Green Chem. 2016;18(1):288–296. doi: 10.1039/C5GC01008J
  • Henderson RK, Jimenez-Gonzalez C, Constable DJC, et al. Expanding GSK’s solvent selection guide - embedding sustainability into solvent selection starting at medicinal chemistry. Green Chem. 2011;13:854–862. DOI:10.1039/c0gc00918k
  • Prat D, Pardigon O, Flemming H-W, et al. Sanofi’s solvent selection guide: a step toward more sustainable processes. Org Proc Res Develop. 2013;17(12):1517–1525. doi: 10.1021/op4002565
  • Isoni V, Wong LL, Khoo HH, et al. Q-SA via ESS: a methodology to help solvent selection for pharmaceutical manufacture at the early process development stage. Green Chem. 2016;18:6564–6572. DOI:10.1039/C6GC02440H
  • Sathish M, Silambarasan S, Madhan B, et al. Exploration of GSK’S solvent selection guide in leather industry: a CSIR-CLRI tool for sustainable leather manufacturing. Green Chem. 2016;18(21):5806–5813. doi: 10.1039/C6GC01774F
  • Diorazio LJ, Hose DRJ, Adlington NK. Toward a more holistic framework for solvent selection. Org Process Res Dev. 2016;20(4):760–773. doi: 10.1021/acs.oprd.6b00015
  • Tobiszewski M, Tsakovski S, Simeonov V, et al. A solvent selection guide based on chemometrics and multicriteria decision analysis. Green Chem. 2015;17(10):4773–4785. doi: 10.1039/C5GC01615K
  • Lopez-Porfiri P, Gorgojo P, Gonzalez-Miquel M. Green solvent selection guide for biobased organic acid recovery. ACS Sustain Chem Eng. 2020;8(24):8958–8969. doi: 10.1021/acssuschemeng.0c01456
  • Witschi C, Doelker E. Residual solvents in pharmaceutical products. Acceptable limits, influences on physicochemical properties, analytical methods, and documented values. Eur J Pharm Biopharm. 1997;43(3):215–242. doi: 10.1016/S0939-6411(96)00037-9
  • Chen D, Sun Q, Huang W, et al. Diverse solvent selection for polymorph landscape investigation based on specific API–solvent interactions. Cryst Growth Des. 2020;20(4):2251–2265. doi: 10.1021/acs.cgd.9b01380
  • Allesoe M, Rantanen J, Aaltonen J, et al. Solvent subset selection for polymorph screening. J Chemom. 2008;22(11–12):621–631. doi: 10.1002/cem.1107
  • Mirmehrabi M, Rohani S. An approach to solvent screening for crystallization of polymorphic pharmaceuticals and fine chemicals. J Pharm Sci. 2005;94(7):1560–1576. doi: 10.1002/jps.20371
  • Sels H, De Smet H, Geuens J. SUSSOL—using artificial intelligence for greener solvent selection and substitution. Molecules. 2020;25(13):3037. doi: 10.3390/molecules25133037
  • Piccione PM, Baumeister J, Salvesen T, et al. Solvent selection methods and tool. Org Process Res Dev. 2019;23(5):998–1016. doi: 10.1021/acs.oprd.9b00065
  • Abramov YA. Rational solvent selection for pharmaceutical impurity purge. Cryst Growth Des. 2018;18(2):1208–1214. doi: 10.1021/acs.cgd.7b01748
  • Ottoboni S, Wareham B, Vassileiou A, et al. A novel integrated workflow for isolation solvent selection using prediction and modeling. Org Process Res Dev. 2021;25(5):1143–1159. doi: 10.1021/acs.oprd.0c00532
  • Dalessandro EV, JR P Jr. Solvent selection for chemical reactions and automated computational screening of solvents using the SMD model. Quim Nova. 2018;41:628–633. doi: 10.21577/0100-4042.20170224
  • Enekvist M, Liang X, Zhang X, et al. Computer-aided design and solvent selection for organic paint and coating formulations. Prog Org Coat. 2022;162:106568. DOI:10.1016/j.porgcoat.2021.106568
  • Chandrasekaran A, Kim C, Venkatram S, et al. A deep learning solvent-selection paradigm powered by a massive solvent/nonsolvent database for polymers. Macromolecules. 2020;53(12):4764–4769. doi: 10.1021/acs.macromol.0c00251
  • Wang J, Song Z, Lakerveld R, et al. Solvent selection for chemical reactions toward optimal thermodynamic and kinetic performances: Group contribution and COSMO-based modeling. Fluid Phase Equilib. 2023;564:113623. DOI:10.1016/j.fluid.2022.113623
  • Qian E, Gupta A, Neal R, et al. Development of Abraham model correlations for describing solute transfer into 2-methyl-1-butanol from both water and the gas phase from experimental solubility data of crystalline organic compounds. Phys Chem Liq. 2020;58(5):623–635. doi: 10.1080/00319104.2019.1625050
  • Liu K, Wang S, Hart E, et al. Development of Abraham model correlations for solute transfer into 2-ethyl-1-hexanol from both water and the gas phase based on measured solubility ratios. Phys Chem Liq. 2020;58(2):202–213. doi: 10.1080/00319104.2018.1564306
  • Longacre L, Wu E, Yang C, et al. Development of Abraham model correlations for solute transfer into the tert-butyl acetate mono-solvent and updated equations for both ethyl acetate and butyl acetate. Liquids. 2022;2(4):258–288. doi: 10.3390/liquids2040016
  • Qian E, Wadawadigi A, Zha O, et al. Determination of Abraham model correlations for describing solute transfer into the methyl butyrate mono-solvent at 298 K. Phys Chem Liq. 2020;58(6):792–802. doi: 10.1080/00319104.2019.1660983
  • Varadharajan A, Sinha S, Xu A, et al. Development of Abraham model correlations for describing solute transfer into transcutol based on molar solubility ratios for pharmaceutical and other organic compounds. J Solution Chem. 2023;52(1):70–90. doi: 10.1007/s10953-022-01215-6
  • Shanmugam N, Zhou A, Motati R, et al. Development of Abraham model correlations for dimethyl adipate from measured solubility data of nonelectrolyte organic compounds. Phys Chem Liq. in press. 2023;1–12. DOI: https://doi.org/10.1080/00319104.2023.2225206.
  • Sinha S, Yang C, Wu E, et al. Abraham solvation parameter model: examination of possible intramolecular hydrogen-bonding using calculated solute descriptors. Liquids. 2022;2(3):131–146. doi: 10.3390/liquids2030009
  • Abraham MH, WE A Jr. Partition coefficients and solubilities of compounds in the water–ethanol solvent system. J Solution Chem. 2011;40(7):1279–1290. doi: 10.1007/s10953-011-9719-x
  • Abraham MH, WE A Jr. Equations for the partition of neutral molecules, ions and ionic species from water to water–ethanol mixtures. J Solution Chem. 2012;41(4):730–740. doi: 10.1007/s10953-012-9822-7
  • Abraham MH, WE A Jr. Equations for the partition of neutral molecules, ions and ionic species from water to water–methanol mixtures. J Solution Chem. 2016;45(6):861–874. doi: 10.1007/s10953-016-0479-5
  • Abraham MH, WE A Jr, Rafols CL, et al. Equations for the correlation and prediction of partition coefficients of neutral molecules and ionic species in the water–isopropanol solvent system. J Solution Chem. 2021;50(4):458–472. doi: 10.1007/s10953-021-01063-w
  • Jiang B, Horton MY, WE A Jr, et al. Ion-specific equation coefficient version of the Abraham model for ionic liquid solvents: determination of coefficients for tributylethylphosphonium, 1-butyl-1-methylmorpholinium, 1-allyl-3-methylimidazolium and octyltriethylammonium cations. Phys Chem Liq. 2017;55(3):358–385. doi: 10.1080/00319104.2016.1218009
  • Mutelet F, Hussard C, Baker GA, et al. Characterization of the solubilizing ability of short-chained glycol-grafted ammonium and phosphonium ionic liquids. J Mol Liq. 2020;304:112786. DOI:10.1016/j.molliq.2020.112786
  • Yue D, WE A Jr, Abraham MH. Development of Abraham model IL-specific correlations for N-triethyl(octyl)ammonium bis(fluorosulfonyl)imide and 1-butyl-3-methylpyrrolidinium bis(fluorosulfonyl)imide. Phys Chem Liq. 2019;57(6):733–745. doi: 10.1080/00319104.2018.1519713
  • Churchill B, Casillas T, WE A Jr, et al. Abraham solvation parameter model: calculation of ion-specific equation coefficients for the N-ethyl-N-methylmorpholinium and N-octyl-N-methylmorpholinium cations. Phys Chem Liq. 2021;59(4):575–584. doi: 10.1080/00319104.2020.1774879
  • Sprunger LM, Achi SS, Pointer R, et al. Development of Abraham model correlations for solvation characteristics of secondary and branched alcohols. Fluid Phase Equilib. 2010;288(1–2):121–127. doi: 10.1016/j.fluid.2009.10.024
  • Wu K, Li Y. Solubility measurement and thermodynamic modeling for o-toluenesulfonamide in 16 solvents from T = 273.15 to 323.85 K. J Chem Eng Data. 2019;64(12):5238–5247. doi: 10.1021/acs.jced.9b00445
  • Wu K, Li Y. Solubility and solution thermodynamics of p-toluenesulfonamide in 16 solvents from T = 273.15 to 324.75 K. J Mol Liq. 2019;293:111577. doi: 10.1016/j.molliq.2019.111577
  • Li Y, Wu K, Liang L. Solubility determination, modeling, and thermodynamic dissolution properties of benzenesulfonamide in 16 neat solvents from 273.15 to 324.45 K. J Chem Eng Data. 2019;64(8):3606–3616. doi: 10.1021/acs.jced.9b00360
  • Xu J, Han S, Cong Y, et al. Thermodynamic functions of 1-methyl-4-(methylsulfonyl)benzene solubility in nine organic solvents from T = (278.15 to 318.15) K. J Chem Thermodyn. 2016;103:234–243. DOI:10.1016/j.jct.2016.08.021
  • Liu M, Wang S, Qu C, et al. Solubility determination and thermodynamic properties of bezafibrate in pure and binary mixed solvents. J Chem Eng Data. 2020;65(4):2156–2169. doi: 10.1021/acs.jced.0c00025
  • Zhang P, Zhang C, Zhao R, et al. Measurement and correlation of the solubility of florfenicol form a in several pure and binary solvents. J Chem Eng Data. 2018;63(6):2046–2055. doi: 10.1021/acs.jced.8b00043
  • Wu X, Wang S, Lu X, et al. Solubility determination and thermodynamic modeling of methanesulfonamide in 13 pure solvents at temperatures of 283.15–323.15 K. J Chem Eng Data. 2022;67(9):2609–2619. doi: 10.1021/acs.jced.2c00012
  • Ulrich N, Endo S, Brown TN, et al. UFZ-LSER database v 3.2.1 [Internet], Leipzig, Germany, Helmholtz centre for environmental research-UFZ. 2017 [accessed on 27 May 2023]. Available from http://www.ufz.de/lserd
  • Motati R, WE A Jr. Determination of Abraham model solute descriptors for 62 additional C10 through C13 methyl- and ethyl-branched alkanes. Liquids. 2023;3(1):118–131. doi: 10.3390/liquids3010010
  • Liu X, WE A Jr, Abraham MH. Descriptors for some compounds with pharmacological activity; calculation of properties. Int J Pharm. 2022;617:/121597/1–/121597/9. doi: 10.1016/j.ijpharm.2022.121597
  • Abraham MH, WE A Jr. Descriptors for ferrocene and some substituted ferrocenes. J Mol Liq. 2017;232:325–331. doi: 10.1016/j.molliq.2017.02.059
  • Benavides D, Longacre L, Varadharajan A, et al. Calculation of Abraham model solute descriptors for 2-naphthoxyacetic acid. Phys Chem Liq. 2023;61(4):264–274. in press. doi: https://doi.org/10.1080/00319104.2023.2207713
  • Schmidt A, Grover D, Zettl H, et al. Determination of Abraham model solute descriptors for isophthalic acid from experimental solubility data in organic solvents at 298 K. Phys Chem Liq. 2016;54(6):747–757. doi: 10.1080/00319104.2016.1149178
  • Abraham MH, WE A Jr. Gas-solvent and water-solvent partition of trans-stilbene at 298 K. J Mol Liq. 2017;238:58–61. doi: 10.1016/j.molliq.2017.04.119
  • Bowen KR, Stephens TW, Lu H, et al. Experimental and predicted solubilities of 3,4-dimethoxybenzoic acid in select organic solvents of varying polarity and hydrogen-bonding character. Eur Chem Bull. 2013;2:577–583.
  • Sprunger LM, Achi SS, WE A Jr, et al. Development of correlations for describing solute transfer into acyclic alcohols based on the Abraham model and fragment-specific equation coefficients. Fluid Phase Equilib. 2010;288(1–2):139–144. doi: 10.1016/j.fluid.2009.10.028
  • Ye S, Saifullah M, Grubbs LM, et al. Determination of the Abraham model solute descriptors for 3,5-dinitro-2-methylbenzoic acid from measured solubility data in organic solvents. Phys Chem Liq. 2011;49(6):821–829. doi: 10.1080/00319104.2010.538848
  • Hart E, Klein A, Zha O, et al. Determination of Abraham model solute descriptors for monomeric 3,4,5-trimethoxybenzoic acid from experimental solubility data in organic solvents measured at 298.2 K. Phys Chem Liq. 2018;56(3):381–390. doi: 10.1080/00319104.2017.1346097
  • Holley K, WE A Jr, Abraham MH. Determination of the Abraham solute descriptors for 2-ethylanthraquinone based on measured solubility ratios. Phys Chem Liq. 2011;49(3):355–365. doi: 10.1080/00319101003646553
  • Barrera M, Hart E, Horton MY, et al. Solubility of sorbic acid in organic mono-solvents: calculation of Abraham Model solute descriptors from measured solubility data. Phys Chem Liq. 2017;55(5):650–658. doi: 10.1080/00319104.2016.1260715
  • Monárrez CI, Stovall DM, Woo JH, et al. Solubility of 9-fluorenone in organic nonelectrolyte solvents. comparison of observed versus predicted values based upon mobile order theory. Phys Chem Liq. 2003;41(1):73–80. doi: 10.1080/0031910021000044474
  • Fletcher KA, Coym KS, Roy LE, et al. Solubility of thioxanthen-9-one in organic nonelectrolyte solvents. comparison of observed versus predicted values based upon mobile order theory. Phys Chem Liq. 1998;35(4):243–252. doi: 10.1080/00319109808030592
  • Yao E, Zhou A, Wu S, et al. Determination of Abraham model solute descriptors for N-Hydroxyphthalimide: An Organic Compound Having a N-Hydroxy (N–OH) Functional Group. J Solution Chem. 2013;52(8):895–909. doi: 10.1007/s10953-023-01276-1
  • Acree WE, Bowen KR, Horton MY, et al. Computation of Abraham model solute descriptors for 3-methyl-4-nitrobenzoic acid from measured solubility data. Phys Chem Liq. 2017; 55: 482–491.
  • Wilson A, Tian A, Chou V, et al. Experimental and predicted solubilities of 3,4-dichlorobenzoic acid in select organic solvents and in binary aqueous–ethanol mixtures. Phys Chem Liq. 2012;50(3):324–335. doi: 10.1080/00319104.2012.673166
  • Stephens T, Loera M, Calderas M, et al. Determination of Abraham model solute descriptors for benzoin based on measured solubility ratios. Phys Chem Liq. 2012;50(2):254–265. doi: 10.1080/00319104.2011.637628
  • Lee G, Che M, Qian E, et al. Determination of Abraham model solute descriptors for o-acetoacetanisidide based on experimental solubility data in organic mono-solvents. Phys Chem Liq. 2019;57(4):528–535. doi: 10.1080/00319104.2018.1496438
  • Hart E, Lee G, Qian E, et al. Determination of Abraham model solute descriptors for 4-tert-butylbenzoic acid from experimental solubility data in organic mono-solvents. Phys Chem Liq. 2019;57(4):445–452. doi: 10.1080/00319104.2018.1482552
  • Hart E, Ramirez A, Cheeran S, et al. Determination of Abraham model solute descriptors for 2-methyl-3-nitrobenzoic acid from measured solubility in alcohol, alkyl ether, alkyl acetate and 2-alkoxyalcohol mono-solvents. Phys Chem Liq. 2017;55:796–804. DOI:10.1080/00319104.2017.1283692
  • Brumfield M, Wadawadigi A, Kuprasertkul N, et al. Determination of Abraham model solute descriptors for three dichloronitrobenzenes from measured solubilities in organic solvents. Phys Chem Liq. 2015;53(2):163–173. doi: 10.1080/00319104.2014.972555
  • Abraham MH, WE A Jr, Brumfield M, et al. Deduction of physicochemical properties from solubilities: 2,4-Dihydroxybenzophenone, biotin and caprolactam as examples. J Chem Eng Data. 2015;60(5):1440–1446. doi: 10.1021/je501140p
  • Hoover KR, Pop K, WE A Jr, et al. Solubility of crystalline nonelectrolyte solutes in organic solvents: Mathematical correlation of 3-chlorobenzoic acid solubilities with the Abraham solvation parameter model. S Afr J Chem. 2005;58:25–29.
  • Abraham MH, WE A Jr. Equations for the transfer of neutral molecules and ionic species from water to organic phases. J Org Chem. 2010;75(4):1006–1015. doi: 10.1021/jo902388n
  • Abraham MH, WE A Jr. Solute descriptors for phenoxide anions and their use to establish correlations for the rates of reactions of anions with iodomethane. J Org Chem. 2010;75(9):3021–3026. doi: 10.1021/jo100292j
  • Abraham MH, WE A Jr. Solvation descriptors for zwitterionic α-Aminoacids; estimation of water–solvent partition coefficients, solubilities, and hydrogen-bond acidity and hydrogen-bond basicity. ACS Omega. 2019;4(2):2883–2892. doi: 10.1021/acsomega.8b03242
  • Qian E, Lee G, Che M, et al. Determination of Abraham model solute descriptors for xanthone based on experimental solubility measurements at 298.2 K. Phys Chem Liq. 2020;58(2):214–221. doi: 10.1080/00319104.2019.1566462
  • Wang S, Liu K, Zhang A, et al. Solubility of 4-methyl-3-nitrobenzoic acid in organic mono-solvents: calculation of Abraham model solute descriptors. Phys Chem Liq. 2020;58(6):782–791. doi: 10.1080/00319104.2019.1660982
  • Guo Y, Hao Y, Zhou Y, et al. Solubility and thermodynamic properties of vanillyl alcohol in some pure solvents. J Chem Thermodyn. 2017;106:276–284. DOI:10.1016/j.jct.2016.11.030
  • Chen J, Chen G, Cheng C, et al. Thermodynamic functions for solubility of 1-hydroxybenzotriazole in sixteen solvents at temperatures from (278.15 to 313.15) K and mixing property of mixtures. J Chem Eng Data. 2017;62(7):2191–2197. doi: 10.1021/acs.jced.7b00316
  • Liu H, Wang S, Qu C, et al. Solid–liquid equilibrium of chlorpropamide in 14 pure solvents at temperature of 283.15 to 323.15 K. J Chem Eng Data. 2020;65(5):2859–2871. doi: 10.1021/acs.jced.0c00169
  • Xu A, Xu R, Wang J. Solubility determination and thermodynamic modelling of terephthaldialdehyde in ten organic solvents from T = (273.15 to 318.15) K and mixing properties of solutions. J Chem Thermodyn. 2016;102:188–198. doi: 10.1016/j.jct.2016.07.013
  • Gao X, Yu S, Wu G, et al. Solid–liquid phase equilibrium of 2-mercapto-1,3,4-thiadiazol in pure organic solvents. J Chem Eng Data. 2021;66(12):4706–4713. doi: 10.1021/acs.jced.1c00764
  • Zhang J, Liang Z, Ji S, et al. The thermal behavior of pyrazinamide in 12 solvents from 288.15 to 328.15 K. J Mol Liq. 2020;329:115572. DOI:10.1016/j.molliq.2021.115572

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.