54
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Abraham model solute descriptors for two additional α-amino acids: D-Tryptophan and L-Tyrosine

&
Pages 433-440 | Received 04 Aug 2023, Accepted 11 Aug 2023, Published online: 18 Aug 2023

References

  • Avdeef A, Kansy M. Trends in PhysChem properties of newly approved drugs over the last six years; Predicting solubility of drugs approved in 2021. J Solution Chem. 2022;51(12):1455–1481. doi: 10.1007/s10953-022-01199-3
  • Bongioanni A, Bueno MS, Mezzano BA, et al. Amino acids and its pharmaceutical applications: a mini review. Int J Pharm. 2022;613:121375. doi: 10.1016/j.ijpharm.2021.121375
  • Abraham MH, Acree WE. Solvation descriptors for zwitterionic α-aminoacids; estimation of water–solvent partition coefficients, solubilities, and hydrogen-bond Acidity and hydrogen-bond basicity. ACS Omega. 2019;4(2):2883–2892. doi: 10.1021/acsomega.8b03242
  • Li X, Li K, Farajtabar A, et al. Solubility of D-tryptophan and L-tyrosine in several organic solvents: determination and solvent effect. J Chem Eng Data. 2019;64(7):3164–3169. doi: 10.1021/acs.jced.9b00258
  • Feng X, Farajtabar A, Lin H, et al. Experimental solubility evaluation and thermodynamic analysis of biologically active D-tryptophan in aqueous mixtures of N,N-dimethylformamide and several alcohols. J Chem Thermodyn. 2019;128:34–44. doi: 10.1016/j.jct.2018.08.018
  • He Q, Cong Y, Zheng M, et al. Solubility of L-tyrosine in aqueous solutions of methanol, ethanol, n-propanol and dimethyl sulfoxide: experimental determination and preferential solvation analysis. J Chem Thermodyn. 2018;124:123–132. doi: 10.1016/j.jct.2018.05.011
  • Gude MT, Meuwissen HHJ, van der Wielen LAM, et al. Partition coefficients and solubilities of α-amino acids in aqueous 1-butanol solutions. Ind Eng Chem Res. 1996;35(12):4700–4712. doi: 10.1021/ie960031w
  • Abraham MH, Acree WE Jr. Equations for the transfer of neutral molecules and ionic species from water to organic phases. J Org Chem. 2010;75:1006–1015. doi: 10.1021/jo902388n
  • Abraham MH, Acree WE Jr. The transfer of neutral molecules, ions and ionic species from water to ethylene glycol and to propylene carbonate; descriptors for pyridinium cations. New J Chem. 2010;34(10):2298–2305. doi: 10.1039/c0nj00222d
  • Abraham MH, Acree WE Jr. Equations for the partition of neutral molecules, ions and ionic species from water to water–Ethanol mixtures. J Solution Chem. 2012;41(4):730–740. doi: 10.1007/s10953-012-9822-7
  • Abraham MH, Acree WE Jr. Equations for the partition of neutral molecules, ions and ionic species from water to water–Methanol mixtures. J Solution Chem. 2016;45(6):861–874. doi: 10.1007/s10953-016-0479-5
  • Jalan A, Ashcraft RW, West RH, et al. Predicting solvation energies for kinetic modeling. Annu Rep Prog Chem Sec C: Phys Chem. 2010;106:211–258. doi: 10.1039/B811056P
  • Clarke ED, Mallon L. The determination of Abraham descriptors and their application to crop protection research. In: Jeschke P, Krämer W, and Schirmer U, et al., eds. Modern methods in crop protection research. New York: Wiley; 2012. p. 273–305. doi: 10.1002/9783527655908.ch11.
  • Clarke ED. Beyond physical properties—application of Abraham descriptors and LFER analysis in agrochemical research. Bioorg Med Chem. 2010;17(12):4153–4159. doi: 10.1016/j.bmc.2009.02.061
  • Poole CF, Ariyasena TC, Lenca N. Estimation of the environmental properties of compounds from chromatographic properties and the solvation parameter method. J Chromatogr A. 2013;1317:85–104. doi: 10.1016/j.chroma.2013.05.045
  • Poole CF, Atapattu SN. Recent advances for estimating environmental properties for small molecules from chromatographic measurements and the solvation parameter model. J Chromatogr A. 2023;1687:463682. doi: 10.1016/j.chroma.2022.463682
  • Endo S, Goss K-U. Applications of polyparameter linear free energy relationships in environmental chemistry. Environ Sci Technol. 2014;48(21):12477–12491. doi: 10.1021/es503369t
  • Bio-Loom. Claremont (CA): biobyte corp. [cited June 20, 2020]. http://www.biobyte.com/index.html
  • Carta R, Tola G. Solubilities of L-cystine, L-tyrosine, L-leucine, and glycine in aqueous solutions at various pHs and NaCl concentrations. J Chem Eng Data. 1996;41(3):414–417. doi: 10.1021/je9501853
  • Lee C-Y, Chen J-T, Chang W-T, et al. Effect of pH on the solubilities of divalent and trivalent amino acids in water at 298.15 K. Fluid Phase Equilib. 2013;343:30–35. doi: 10.1016/j.fluid.2013.01.010
  • Aliyeva M, Brandao P, Gomes JRB, et al. Salt effects on the solubility of aromatic and dicarboxylic amino acids in water. J Chem Thermodyn. 2023;177:106929. doi: 10.1016/j.jct.2022.106929
  • Bowden NA, Sanders JPM, Bruins ME. Solubility of the proteinogenic α-amino acids in water, Ethanol, and Ethanol–water mixtures. J Chem Eng Data. 2018;63(3):488–497. doi: 10.1021/acs.jced.7b00486
  • Guo M, Chang ZH, Liang E, et al. The effect of chain length and side chains on the solubility of peptides in water from 278.15 K to 313.15 K: a case study in glycine homopeptides and dipeptides. J Mol Liq. 2022;352:118681. doi: 10.1016/j.molliq.2022.118681
  • Dalton JB, Schmidt CLA. The solubilities of certain amino acids in water, the densities of their solutions at twenty-five degrees, and the calculated heats of solution and partial molal volumes. J Biol Chem. 1933;103(2):549–578. doi: 10.1016/S0021-9258(18)75835-3
  • Ulrich N, Endo S, Brown TN, et al. UFZ-LSER database v 3.2.1 [Internet], Leipzig, Germany, Helmholtz Centre for environmental research-UFZ. 2017 [cited 27 July 2023]. Available from: http://www.ufz.de/lserd
  • Abraham MH, McGowan JC. The use of characteristic volumes to measure cavity terms in reversed phase liquid chromatography. Chromatographia. 1987;23(4):243–246. doi: 10.1007/bf02311772
  • Sinha S, Yang C, Wu E, et al. Abraham solvation parameter model: examination of possible intramolecular hydrogen-bonding using calculated solute descriptors. Liquids. 2022;2(3):131–146. doi: 10.3390/liquids2030009
  • Shanmugam N, Zhou A, Motati R, et al. Development of Abraham model correlations for dimethyl adipate from measured solubility data of nonelectrolyte organic compounds. Phys Chem Liq. 2023;61(5):328–339. doi: 10.1080/00319104.2023.2225206
  • Varadharajan A, Sinha S, Xu A, et al. Development of Abraham model correlations for describing solute transfer into transcutol based on molar solubility ratios for pharmaceutical and other organic compounds. J Solution Chem. 2023;52(1):70–90. doi: 10.1007/s10953-022-01215-6
  • Abraham MH, Acree WE Jr, Rafols CL, et al. Equations for the correlation and prediction of partition coefficients of neutral molecules and ionic species in the water–isopropanol solvent system. J Solution Chem. 2021;50(4):458–472. doi: 10.1007/s10953-021-01063-w
  • Stovall DM, Dai C, Zhang S, et al. Abraham model correlation for describing solute transfer into anyhydrous 1,2-propylene glycol for neutral and ionic species. Phys Chem Liq. 2016;54(1):1–13. doi: 10.1080/00319104.2015.1058379
  • Abraham MH, Acree WE Jr. Analysis of the solubility of betaine: calculation of descriptors and physicochemical properties. Fluid Phase Equilibria. 2015;387:1–4. doi: 10.1016/j.fluid.2014.11.019
  • Zhu W, Fan Y, Xu Q, et al. Saturated solubility and thermodynamic evaluation of l-tryptophan in eight pure solvents and three groups of binary mixed solvents by the gravimetric method a T = 278.15–333.15 K. J Chem Eng Data. 2019;64(9):4154–4168. doi: 10.1021/acs.jced.9b00562
  • Wu J, Wang J, Zhao H. Solubility of D-aspartic acid in several neat solvents: determination, modeling, and solvent effect analysis. J Chem Eng Data. 2019;64(6):2904–2910. doi: 10.1021/acs.jced.9b00320
  • Qiu J, Wang P, Hu S, et al. Solid–liquid equilibrium o l-thioproline in nine neat solvents and water + acetonitrile binary solvent system from 283.15 to 323.15 K: Solubility determination and data modeling. J Chem Eng Data. 2021;66(2):1201–1209. doi: 10.1021/acs.jced.0c00996
  • He H, Qiu J, Huang H, et al. Solubility and Hansen solubility parameters of L-glutamic acid 5-methyl ester in 12 organic solvents from 283.15 to 323.15 K. J Chem Eng Data. 2021;66(10):3844–3852. doi: 10.1021/acs.jced.1c00504
  • Majumder K, Majumder K, Lahiri SC. Solubilities of amino acids in dioxane + water mixtures and the determination of transfer free energies of interaction of amino acid from water to aquo-organic mixtures. Z Phys Chem. 2000;214(3):285–299. doi: 10.1524/zpch.2000.214.3.285
  • Li W, Zhu Y, Liu Z, et al. Determination and modeling of D-histidine solubility in several pure solvents from 293.15 to 333.15 K. J Chem Eng Data. 2019;64(12):5571–5577. doi: 10.1021/acs.jced.9b00659
  • Zhao X, Farajtabar A, Zhao H, et al. Solubility modelling and thermodynamic aspect of D-aspartic acid in aqueous co-solvent mixtures of N-methyl-2-pyrrolidone, N,N-dimethylformamide, dimethyl sulfoxide and 1, 4-dioxane. J Chem Thermodyn. 2019;138:196–204. doi: 10.1016/j.jct.2019.06.025

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.