48
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Elaboration, synthesis and characterization by the viscosimetric study of chitosan materials in dimethyl sulfoxide hydrochloric acid

&
Pages 455-469 | Received 17 Feb 2023, Accepted 14 Aug 2023, Published online: 23 Aug 2023

References

  • Cherif E, Zoghlami O, Othman T. Investigation of critical concentrations of poly(vinyl pyrrolidone) in N, N - dimethylformamide by a viscosity technique. Phys Chem Liq. 2015;53(1):75–83. doi: 10.1080/00319104.2014.937864
  • Cherif E, Manaa S, Othman T. The correlation properties of poly(vinyl pyrrolidone) in N,N-dimethylformamide + water by Conductometric study. Fluid Phase Equilib. 2015;401:82–87. doi: 10.1016/j.fluid.2015.05.018
  • Cherif E, Jammazi J, Othman T. Thermodynamic properties of N,N- dimethylformamide + water. Phys Chem Liq. 2014;52:751–762. doi: 10.1080/00319104.2014.924380
  • Cherif E, Manaa S, Othman T. The hidden property of Arrhenius-type relationship for the PSSNa–DMF/W solution. Phys Chem Liq. 2017;56:518–527. doi: 10.1080/00319104.2017.1354374
  • Manaa S, Cherif E, Othman T. Solution properties of poly(styrene-co-sodium styrene sulfonate). Phys Chem Liq. 2018;56(2):241–249. doi: 10.1080/00319104.2017.1326493
  • Cherif E, Moumni H. The properties on a polysaccharide of sodium carboxymethylcellulose (CMC) in dimethylacetamide + acetone by Conductometric study. Phys Chem Liq. 2022;60(3):442–451. doi: 10.1080/00319104.2021.2012776
  • Cherif E, Ben Yahya A. The correlation properties of chitosan in dimethyl sulfoxide + hydrochloric acid by Conductometric study. Phys Chem Liq. 2022;60:636–644. doi: 10.1080/00319104.2022.2057979
  • Benoso P, Bittante AMQB, Moraes ICF, et al. Rheological and viscoelastic properties of colloidal solutions based on gelatins and chitosan as affected by pH. Int J of Food Sci Tech. 2022;57:2365–2375. doi: 10.1111/ijfs.15592
  • Sun J, Schiffman JD, Perry SL. Linear Viscoelasticity and time–alcohol superposition of chitosan/hyaluronic acid complex coacervates. ACS Appl Polym Mater. 2022;4(3):1617–1625. doi: 10.1021/acsapm.1c01411
  • Horn MM, Amaro Martins VC, Maria De Guzzi Plepis A. Rheological characterization of chitosan/starch blends by varying polyols and amylopectin content. J Dispers Sci Technol. 2019;40(10):1405–1412. doi: 10.1080/01932691.2018.1515025
  • Aziz SB, Hamsan MH, Abdullah RM, et al. Protonic EDLC cell based on chitosan (CS): methylcellulose (MC) solid polymer blend electrolytes. Ionics. 2020;26(4):1829–1840. doi: 10.1007/s11581-020-03498-5
  • Zahra H, Sawada D, Guizani C, et al. Close packing of cellulose and chitosan in regenerated cellulose fibers improves carbon yield and structural properties of respective carbon fibers. Biomacromolecules. 2020;21(10):4326–4335. doi: 10.1021/acs.biomac.0c01117
  • Khattak S, Qin X-T, Huang L-H, et al. Preparation and characterization of antibacterial bacterial cellulose/chitosan hydrogels impregnated with silver sulfadiazine. Int j biol macromol. 2021;189:483–493. doi: 10.1016/j.ijbiomac.2021.08.157
  • Stanescu P-O, Radu I-C, Leu Alexa R, et al. Novel chitosan and bacterial cellulose biocomposites tailored with polymeric nanoparticles for modern wound dressing development. Drug Deliv. 2021;28:1932–1950. doi: 10.1080/10717544.2021.1977423
  • Kai J, Xuesong Z. Preparation, characterization, and cytotoxicity evaluation of zinc oxide–bacterial cellulose–chitosan hydrogels for antibacterial dressing. Macromol Chem Phys. 2020;221:2000257–2000269. doi: 10.1002/macp.202000257
  • Shen R, Wang H, Wu K, et al. Characterization and antimicrobial properties of ferulic acid grafted self-assembled bacterial cellulose-chitosan membranes. J Appl Polym Sci. 2021;138(33):50824–50837. doi: 10.1002/app.50824
  • Wei B, Zou J, Pu Q, et al. One-step preparation of hydrogel based on different molecular weights of chitosan with citric acid. J Sci Food Agric. 2022;102(9):3826–3834. doi: 10.1002/jsfa.11732
  • Ajun W, Yan S, Liand G, et al. Preparation of aspirin and probucol in combination loaded chitosan nanoparticles and in vitro release study. Carbohydr Polym. 2009;75(4):566–574. doi: 10.1016/j.carbpol.2008.08.019
  • Qasim M, Riaz N, Lu D, et al. Flow over a needle moving in a stream of dissipative fluid having variable viscosity and thermal conductivity. Arab J Sci Eng. 2021;46(8):7295–7302. doi: 10.1007/s13369-021-05352-w
  • Xiao SS, Sun Y, Wang S, et al. Study on polyether carboxylate surfactant as viscosity reducer for heavy oil recovery. Energy Chem Ind. 2018;39:49–54.
  • Esfe MH, Arani AAA, Rezaie M, et al. Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/water hybrid nanofluid. Int Commun Heat Mass Transf. 2015;66:189–195. doi: 10.1016/j.icheatmasstransfer.2015.06.003
  • Esfe MH, Saedodin S, Asadi A, et al. Thermal conductivity and viscosity of Mg(OH)2 -ethylene glycol nanofluids. Finding a critical temperature. J Therm Anal Calorim. 2015;120:1145–1149. doi: 10.1007/s10973-015-4417-3
  • Mahbubul IM, Chong TH, Khaleduzzaman SS, et al. Effect of ultrasonication duration on colloidal structure and viscosity of alumina–water nanofluid. Ind Eng Chem Res. 2014;53:6677–6684. doi: 10.1021/ie500705j
  • Amin A-TM, Hamzah WAW, Oumer AN. Thermal conductivity and dynamic viscosity of mono and hybrid organic- and synthetic-based nanofluids: a critical review. Nanotechnol Rev. 2021;10:1624–1661. doi: 10.1515/ntrev-2021-0086
  • Martin D, Weise A, Niclas HJ. The solvent dimethyl sulfoxide. Angew Chem Int Ed. 1967;6(4):318–334. doi: 10.1002/anie.196703181
  • Omura K, Sharma AK, Swern D. Dimethyl sulfoxide-trifluoroacetic anhydride. New reagent for oxidation of alcohols to carbonyls. J Org Chem. 1976;41(6):957–962. doi: 10.1021/jo00868a012
  • Parikh JR, Doering WVE. Sulfur trioxide in the oxidation of alcohols by dimethyl sulfoxide. J Am Chem Soc. 1967;89:5505–5507. doi: 10.1021/ja00997a067
  • Pummerer R. Über Phenyl-sulfoxyessigsäure. Chem Ber. 1909;42(2):2282–2291. doi: 10.1002/cber.190904202126
  • Wu X-F, Natte K. The applications of dimethyl sulfoxide as reagent in organic synthesis. Adv Synth Catal. 2016;358(3):336–352. doi: 10.1002/adsc.201501007
  • Jones-Mensah E, Karki M, Magolan J. Dimethyl sulfoxide as a synthon in organic chemistry. Synthesis. 2016;48(10):1421–1436. doi: 10.1055/s-0035-1560429
  • Venkateswarlu B, Narayana PVS. Cu-Al2O3/H2O hybrid nanofluid flow past a porous stretching sheet due to temperature dependent viscosity and viscous dissipation. Heat Transf. 2021;50:432–449. doi: 10.1002/htj.21884
  • Lu G, Wang XD, Duan YY. A critical review of dynamic wetting by complex fluids: from Newtonian fluids to nonnewtonian fluids and nanofluids. Adv Colloid Interface Sci. 2016;236:43–62. doi: 10.1016/j.cis.2016.07.004
  • Antonio G, Faria F, Takeiti C, et al. Rheological behavior of blueberry. Food Sci Technol. 2009;29(4):732–737. doi: 10.1590/S0101-20612009000400006
  • Poonlarp PB, Pongsirikul I. Rheological properties of mango puree and process development of mango sheet Rheological properties of mango puree and process development of mango sheet. Int Soc Hortic Sci. 2014;1024:373–380. doi: 10.17660/ActaHortic.2014.1024.51
  • Bridgeman J. Advances in engineering software computational fluid dynamics modelling of sewage sludge mixing in an anaerobic digester. Adv Eng Softw. 2012;44(1):54–62. doi: 10.1016/j.advengsoft.2011.05.037
  • Chibowski E. Some problems of characterization of a solid surface via the surface free energy changes. Adsorpt Sci Technol. 2017;35(7–8):647–659. doi: 10.1177/0263617417704115
  • Behler J. Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations. Phys Chem Chem Phys. 2011;13(40):17930–17955. doi: 10.1039/c1cp21668f
  • Handley CM, Popelier PL. Potential energy surfaces fitted by artificial neural networks. J Phys Chem A. 2010;114:3371–3383. doi: 10.1021/jp9105585
  • Zenkiewicz M. Methods for the calculation of surface free energy of solids. J Achiev. 2007;24:137–145.
  • Zou XQ, Zhang H, Chen T, et al. Preparation and characterization of polyacrylamide/sodium alginate microspheres and its adsorption of MB dye. Colloids Surf A-Physicochem Eng Asp. 2019;567:184–192. doi: 10.1016/j.colsurfa.2018.12.019
  • Ahmed MJ, Okoye PU, Hummadi EH, et al. High-performance porous biochar from the pyrolysis of natural and renewable seaweed (Gelidiella acerosa) and its application for the adsorption of methylene blue. Bioresour Technol. 2019;278:159–164. doi: 10.1016/j.biortech.2019.01.054
  • Zahed M, Parsamehr PS, Tofighy MA, et al. Synthesis and functionalization of graphene oxide (GO) for salty water desalination as adsorbent. Chem Eng Res Des. 2018;138:358–365. doi: 10.1016/j.cherd.2018.08.022

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.