58
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Micellization of a cationic and an anionic surfactant in the presence of diphenylcarbazide in aqueous media and the effect of micelle surface charge on the complexation of the solubilised ligand with metal ions

, &
Pages 470-479 | Received 20 Jan 2023, Accepted 17 Aug 2023, Published online: 27 Aug 2023

References

  • Ghezzi L, Monteleone G, Robinson B, et al. Metal extraction in water/micelle systems: complex formation, stripping and recovery of Cd(II). Colloids Surf A Physicochem Eng Asp. 2008;317(1–3):717–721. doi: 10.1016/j.colsurfa.2007.12.008
  • Alvarez M, Garcia M, Sanzmedel A. The complexation of Cr(III) and Cr(VI) with flavones in micellar media and its use for the spectrophotometric determination of chromium. Talanta. 1989;36(9):919–923. doi: 10.1016/0039-9140(89)80030-X
  • Tani H, Kamidate T, Watanabe H. Micelle-mediated extraction. J Chromatogr A. 1997;780(1–2):229–241. doi: 10.1016/S0021-9673(97)00345-2
  • Stalikas CD. Micelle-mediated extraction as a tool for separation and preconcentration in metal analysis. Trends Analyt Chem. 2002;21(5):343–355. doi: 10.1016/S0165-9936(02)00502-2
  • Rodríguez A, Graciani MDM, Moyá ML. Effects of addition of polar organic solvents on micellization. Langmuir. 2008;24(22):12785–12792. doi: 10.1021/la802320s
  • Nazir N, Ahanger MS, Akbar A. Micellization of cationic surfactant cetyltrimethylammonium bromide in mixed water-alcohol media. J Dispers Sci Technol. 2009;30(1):51–55. doi: 10.1080/01932690802477264
  • Sanchez-Fernandez A, Hammond OS, Jackson AJ, et al. Surfactant–solvent interaction effects on the micellization of cationic surfactants in a carboxylic acid-based deep eutectic solvent. Langmuir. 2017;33(50):14304–14314. doi: 10.1021/acs.langmuir.7b03254
  • Dutkiewicz E, Jakubowska A. Effect of electrolytes on the physicochemical behaviour of sodium dodecyl sulphate micelles. Colloid & Polymer Science. 2002;280(11):1009–1014. doi: 10.1007/s00396-002-0723-y
  • Kumar B, Tikariha D, Ghosh KK. Effects of electrolytes on micellar and surface properties of some monomeric surfactants. J Dispers Sci Technol. 2012;33(2):265–271. doi: 10.1080/01932691.2011.561178
  • Alam M, Mohammed Siddiq A, Mythili V, et al. Effect of organic additives and temperature on the micellization of cationic surfactant cetyltrimethylammonium chloride: evaluation of thermodynamics. Journal Of Molecular Liquids. 2014;199:511–517. doi: 10.1016/j.molliq.2014.09.026
  • Chauhan S, Sharma K. Effect of temperature and additives on the critical micelle concentration and thermodynamics of micelle formation of sodium dodecyl benzene sulfonate and dodecyltrimethylammonium bromide in aqueous solution: a conductometric study. J Chem Thermodyn. 2014;71:205–211. doi: 10.1016/j.jct.2013.12.019
  • Sharma N, Jain SK, Rastogi RC. Solubilization of 5-methoxy tryptamine molecular probes in CTAB and SDS micelles: a cmc and binding constant study. Spectrochim Acta A Mol Biomol Spectrosc. 2008;69(3):748–756. doi: 10.1016/j.saa.2007.05.035
  • Ishii S, Ishikawa S, Mizuno N, et al. Indomethacin solubilization induced shape transition in CnE7 () nonionic micelles. J Colloid Interface Sci. 2008;317(1):115–120. doi: 10.1016/j.jcis.2007.09.021
  • Bhat PA, Dar AA, Rather GM. Solubilization capabilities of some cationic, anionic, and nonionic surfactants toward the poorly water-soluble antibiotic drug erythromycin. J Chem Eng Data. 2008;53(6):1271–1277. doi: 10.1021/je700659g
  • Stephenson BC, Rangel-Yagui CO, Junior AP, et al. Experimental and theoretical investigation of the micellar-assisted solubilization of ibuprofen in aqueous media. Langmuir. 2006;22(4):1514–1525. doi: 10.1021/la052530k
  • Krishna AK, Flanagan DR. Micellar solubilization of a new antimalarial drug, β-arteether. J Pharmaceut sci. 1989;78(7):574–576. doi: 10.1002/jps.2600780713
  • Zdziennicka A, Szymczyk K, Krawczyk J, et al. Critical micelle concentration of some surfactants and thermodynamic parameters of their micellization. Fluid Phase Equilibria. 2012;322–323:126–134. doi: 10.1016/j.fluid.2012.03.018
  • Yun J. Micellar colorimetric determination of iron, cobalt, nickel and copper using 1-nitroso-2-naphthol. Talanta. 2000;52(5):893–902. doi: 10.1016/S0039-9140(00)00441-0
  • Sapelli E, Brandão TAS, Fiedler HD, et al. Fluorescence of Zn(II) 8-hydroxyquinoline complex in the presence of aqueous micellar media: the special cetyltrimethylammonium bromide effect. J Colloid Interface Sci. 2007;314(1):214–222. doi: 10.1016/j.jcis.2007.05.049
  • Huang X. Mixed micellar medium for the spectrophotometric determination of molybdenum in molybdenum/tungsten mixtures. Talanta. 1998;47(4):869–875. doi: 10.1016/S0039-9140(98)00175-1
  • Younas N, Rashid MA, Usman M, et al. Solubilization of Ni imidazole complex in micellar media of anionic surfactants, sodium dodecyl sulfate and sodium stearate. J Surfact Deterg. 2017;20(6):1311–1320. doi: 10.1007/s11743-017-1997-x
  • Rahman MR, Islam M, Islam M. Solubilization of diphenylcarbazide in the micellar system of tetradecyltrimethylammonium bromide: the micellar effect on complex formation of the ligand. Phys Chem Liq. 2022;60(6):882–891. doi: 10.1080/00319104.2022.2068011
  • Sepulveda L, Cortes J. Ionization degrees and critical micelle concentrations of hexadecyltrimethylammonium and tetradecyltrimethylammonium micelles with different counterions. J Phys Chem. 1985;89(24):5322–5324. doi: 10.1021/j100270a040
  • More U, Vaid Z, Bhamoria P, et al. Effect of [C n mim][Br] based ionic liquids on the aggregation behavior of tetradecyltrimethylammonium bromide in aqueous medium. J Solution Chem. 2015;44(3–4):850–874. doi: 10.1007/s10953-015-0318-0
  • Rosen MJ. Surfactants and interfacial phenomena. 3rd ed. Hoboken, NJ: Wiley-Interscience; 2004. doi: 10.1002/0471670561
  • Singh HN, Swarup S, Saleem SM. Effect of electrolytes on the micellization of ionic surfactants in n-alkanol—water mixtures. J Colloid Interface Sci. 1979;68(1):128–134. doi: 10.1016/0021-9797(79)90264-9
  • Akhter MS, Alawi SM. The effect of organic additives on critical micelle concentration of non-aqueous micellar solutions. Colloids Surf A Physicochem Eng Asp. 2000;175(3):311–320. doi: 10.1016/S0927-7757(00)00671-3
  • Harutyunyan LR, Harutyunyan RS. Effect of amino acids on micellization and micellar parameters of anionic surfactant alpha olefin sulfonate C 14 –C 16 in aqueous solutions: surface tension, conductometric, volumetric, and fluorescence studies. J Chem Eng Data. 2019;64(2):640–650. doi: 10.1021/acs.jced.8b00886
  • Nagarajan R, Chaiko MA, Ruckenstein E. Locus of solubilization of benzene in surfactant micelles. J Phys Chem. 1984;88(13):2916–2922. doi: 10.1021/j150657a049
  • Rangel-Yagui CO, Pessoa A, Tavares LC. Micellar solubilization of drugs. J Pharm Pharm Sci. 2005;8(2):147–165.
  • Chakraborty T, Ghosh S, Moulik SP. Micellization and related behavior of binary and ternary surfactant mixtures in aqueous medium: Cetyl Pyridinium Chloride (CPC), Cetyl Trimethyl Ammonium Bromide (CTAB), and polyoxyethylene (10) cetyl ether (brij-56) derived System. J Phys Chem B. 2005;109(31):14813–14823. doi: 10.1021/jp044580o
  • Callaghan A, Doyle R, Alexander E, et al. Thermodynamic properties of micellization and adsorption and electrochemical studies of hexadecylpyridinium bromide in binary mixtures of 1,2-ethanediol with water. Langmuir. 1993;9(12):3422–3426. doi: 10.1021/la00036a016
  • Palepu R, Gharibi H, Bloor DM, et al. Electrochemical studies associated with the micellization of cationic surfactants in aqueous mixtures of ethylene glycol and glycerol. Langmuir. 1993;9(1):110–112. doi: 10.1021/la00025a025
  • Schick MJ, Fowkes FM. Foam stabilizing additives for synthetic detergents. interaction of additives and detergents in mixed micelles. J Phys Chem. 1957;61(8):1062–1068. doi: 10.1021/j150554a007
  • Bohmer MR, Koopal LK, Lyklema J. Micellization of ionic surfactants: calculations based on a self-consistent field lattice model. J Phys Chem. 1991;95(23):9569–9578. doi: 10.1021/j100176a095
  • Jiang B, Du J, Cheng S, et al. Effects of amine additives on critical micelle concentration of ionic surfactants. J Dispers Sci Technol. 2003;24(6):755–760. doi: 10.1081/DIS-120025542
  • Kandori K, McGreevy RJ, Schechter RS. Solubilization of phenol and benzene in cationic micelles: binding sites and effect on structure. J Phys Chem. 1989;93(4):1506–1510. doi: 10.1021/j100341a063
  • Scheu R, Chen Y, de Aguiar HB, et al. Specific ion effects in amphiphile hydration and interface stabilization. J Am Chem Soc. 2014;136(5):2040–2047. doi: 10.1021/ja4120117
  • Scheu R, Rankin BM, Chen Y, et al. Charge asymmetry at aqueous hydrophobic interfaces and hydration shells. Angew Chem Int Ed. 2014;53(36):9560–9563. doi: 10.1002/anie.201310266
  • Lommelen R, Binnemans K. Hard–soft interactions in solvent extraction with basic extractants: comparing zinc and cadmium halides. ACS Omega. 2021;6(42):27924–27935. doi: 10.1021/acsomega.1c03790
  • Bock CW, Katz AK, Glusker JP. Hydration of zinc ions: a comparison with magnesium and beryllium ions. J Am Chem Soc. 1995;117(13):3754–3765. doi: 10.1021/ja00118a012
  • Gazzaz HA, Robinson BH. Kinetics involving divalent metal ions and ligands in surfactant self-assembly systems: applications to metal-ion extraction. Langmuir. 2000;16(23):8685–8691. doi: 10.1021/la0002942
  • Xu R, Smart G. Electrophoretic mobility study of dodecyltrimethylammonium bromide in aqueous solution and adsorption on microspheres 1. Langmuir. 1996;12(17):4125–4133. doi: 10.1021/la9602067
  • Kabir-Ud-Din, Bansal D, Kumar S, et al. Synergistic effect of salts and organic additives on the micellar association of cetylpyridinium chloride. Langmuir. 1997;13(19):5071–5075. doi: 10.1021/la961100e
  • Quina FH, Hinze WL. Surfactant-mediated cloud point extractions: an environmentally benign alternative separation approach. Ind Eng Chem Res. 1999;38(11):4150–4168. doi: 10.1021/ie980389n
  • Marcus Y. Thermodynamics of solvation of ions. Part 5—Gibbs free energy of hydration at 298.15 K. J Chem Soc Faraday Trans. 1991;87(18):2995–2999. doi: 10.1039/FT9918702995
  • Fujio K, Mitsui T, Kurumizawa H, et al. Solubilization of a water-insoluble dye in aqueous NaBr solutions of alkylpyridinium bromides and its relation to micellar size and shape. Colloid Polym Sci. 2004;282(3):223–229. doi: 10.1007/s00396-003-0896-z
  • James AD, Robinson BH. Micellar catalysis of metal-complex formation. Kinetics of the reaction between NiII and pyridine-2-azo-p-dimethylaniline (PADA) in the presence of sodium dodecylsulphate micelles; a model system for the study of metal ion reactivity at charged interfaces. J Chem Soc Faraday Trans 1. 1978;74():10. doi: 10.1039/f19787400010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.