90
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Abraham solvation parameter model: determination of experiment-based solute descriptor values for 3,5-dimethoxybenzoic acid based on measured solubility data

, , , &
Pages 89-100 | Received 10 Nov 2023, Accepted 13 Nov 2023, Published online: 22 Nov 2023

References

  • Dragon software, KODE CHEMOINFORMATICS. Lungarno Galielo Galilei 1 - 56122. Pisa, Italy. https://chm.kode-solutions.net/pf/dragon-7-0/
  • CODESSA III Software. Semichem, 12480 W 62nd Terrace, Suite 202. Shawnee, Kansas, USA. http://www.semichem.com/contact.php
  • Abraham MH. Scales of solute hydrogen-bonding: their construction and application to physicochemical and biochemical processes. Chem Soc Rev. 1993;22(2):73–83. doi: 10.1039/cs9932200073
  • Abraham MH, Ibrahim A, Zissimos AM. Determination of sets of solute descriptors from chromatographic measurements. J Chromatogr A. 2004;1037(1–2):29–47. doi: 10.1016/j.chroma.2003.12.004
  • Abraham MH, Smith RE, Luchtefeld R, et al. Prediction of solubility of drugs and other compounds in organic solvents. J Pharm Sci. 2010;99(3):1500–1515. doi: 10.1002/jps.21922
  • Sinha S, Yang C, Wu E, et al. Abraham solvation parameter model: examination of possible intramolecular hydrogen-bonding using calculated solute descriptors. Liquids. 2022;2(3):131–146. doi: 10.3390/liquids2030009
  • Shanmugam N, Zhou A, Motati R, et al. Development of Abraham model correlations for dimethyl adipate from measured solubility data of nonelectrolyte organic compounds. Phys Chem Liq. 2023;61(5):328–339. doi: 10.1080/00319104.2023.2225206
  • Qian E, Wadawadigi A, Zha O, et al. Determination of Abraham model correlations for describing solute transfer into the methyl butyrate mono-solvent at 298 K. Phys Chem Liq. 2020;58(6):792–802. doi: 10.1080/00319104.2019.1660983
  • Jiang B, Horton MY, Acree WE Jr, et al. Ion-specific equation coefficient version of the Abraham model for ionic liquid solvents: determination of coefficients for tributylethylphosphonium, 1-butyl-1-methylmorpholinium, 1-allyl-3-methylimidazolium and octyltriethylammonium cations. Phys Chem Liq. 2017;55:358–385. doi: 10.1080/00319104.2016.1218009
  • Yue D, Acree WE Jr, Abraham MH. Development of Abraham model IL-specific correlations for N-triethyl(octyl)ammonium bis(fluorosulfonyl)imide and 1-butyl-3-methylpyrrolidinium bis(fluorosulfonyl)imide. Phys Chem Liq. 2019;57:733–745. doi: 10.1080/00319104.2018.1519713
  • Churchill B, Casillas T, Acree WE Jr, et al. Abraham solvation parameter model: calculation of ion-specific equation coefficients for the N-ethyl-N-methylmorpholinium and N-octyl-N-methylmorpholinium cations. Phys Chem Liq. 2021;59:575–584. doi: 10.1080/00319104.2020.1774879
  • Abraham MH, Ibrahim A, Acree WE Jr. Air to liver partition coefficients for volatile organic compounds and blood to liver partition coefficients for volatile organic compounds and drugs. Eur J Med Chem. 2007;42:743–751. doi: 10.1016/j.ejmech.2006.12.011
  • Abraham MH, Ibrahim A, Acree WE Jr. Air to lung partition coefficients for volatile organic compounds and blood to lung partition coefficients for volatile organic compounds and drugs. Eur J Med Chem. 2008;43(3):478–485. doi: 10.1016/j.ejmech.2007.04.002
  • Abraham MH, Ibrahim A, Acree WE Jr. Air to muscle and blood/plasma to muscle distribution of volatile organic compounds and drugs: linear free energy analyses. Chem Res Toxicol. 2006;19:801–808. doi: 10.1021/tx050337k
  • Abraham MH, Ibrahim A. Air to fat and blood to fat distribution of volatile organic compounds and drugs: linear free energy analyses. Eur J Med Chem. 2006;41(12):1430–1438. doi: 10.1016/j.ejmech.2006.07.012
  • Zhou A, Longacre L, Motati R, et al. Abraham solvation parameter model: revised predictive expressions for solute transfer into polydimethylsiloxane based on much larger and chemically diverse datasets. Compounds. 2023;3(1):205–223. doi: 10.3390/compounds3010017
  • Zhu T, Chen W, Singh RP, et al. Versatile in silico modeling of partition coefficients of organic compounds in polydimethylsiloxane using linear and nonlinear methods. J Hazard Mater. 2020;399:123012. doi: 10.1016/j.jhazmat.2020.123012
  • Tao C, Chen Y, Tao T, et al. Versatile in silico modeling of XAD-air partition coefficients for POPs based on Abraham descriptor and temperature. Environ Pollut. 2022;311:119857. doi: 10.1016/j.envpol.2022.119857
  • Uber TH, Hueffer T, Planitz S, et al. Characterization of sorption properties of high-density polyethylene using the poly-parameter linear free-energy relationships. Environ Pollut. 2019;248:312–319. doi: 10.1016/j.envpol.2019.02.024
  • Hoover KR, Acree WE Jr, Abraham MH. Chemical toxicity correlations for several fish species based on the Abraham solvation parameter model. Chem Res Toxicol. 2005;18(9):1497–1505. doi: 10.1021/tx050164z
  • Hoover KR, Flanagan KB, Acree WE Jr, et al. Chemical toxicity correlations for several protozoas, bacteria, and water fleas based on the Abraham solvation parameter model. J Environ Eng Sci. 2007;6(2):165–174. doi: 10.1139/s06-041
  • Bowen KR, Flanagan KB, Acree WE Jr, et al. Correlation of the toxicity of organic compounds to tadpoles using the Abraham model. Sci Total Environ. 2006;371:99–109. doi: 10.1016/j.scitotenv.2006.08.030
  • Abraham MH, Kumarsingh R, Cometto-Muniz JE, et al. An algorithm for nasal pungency thresholds in man. Arch Of Toxicol. 1998;72(4):227–232. doi: 10.1007/s002040050493
  • Abraham MH, Kumarsingh R, Cometto-Muniz JE, et al. Draize Eye Scores and Eye irritation thresholds in man combined into one quantitative structure–activity relationship. Toxicol Vitro. 1998;12(4):403–408. doi: 10.1016/S0887-2333(98)00010-1
  • Alarie Y, Nielsen GD, Andonian-Haftvan J, et al. Physiochemical properties of nonreactive volatile organic chemicals to estimate RD50: alternatives to animal studies. Toxicol Appl Pharmacol. 1995;134(1):92–99. doi: 10.1006/taap.1995.1172
  • Abraham MH, Acree WE Jr, Mintz C, et al. Effect of anesthetic structure on inhalation anesthesia: implications for the mechanism. J Pharm Sci. 2008;97:2373–2384. doi: 10.1002/jps.21150
  • Abraham MH, Acree WE Jr. Prediction of convulsant activity of gases and vapors. Eur J Med Chem. 2009;44:885–890. doi: 10.1016/j.ejmech.2008.05.027
  • Sinha S, Varadharajan A, Xu A, et al. Determination of Abraham model solute descriptors for hippuric acid from measured molar solubilities in several organic mono-solvents of varying polarity and hydrogen-bonding ability. Phys Chem Liq. 2022;60(4):563–571. doi: 10.1080/00319104.2021.2018692
  • Yao E, Acree WE .Abraham general solvation parameter model: intramolecular hydrogen bond formation and its effect on the A- and B-descriptor values of select tetracycline derivatives. Phys Chem Liq. 2023:1–9. in press. doi: 10.1080/00319104.2023.2263901
  • Yao E, Zhou A, Wu S, et al. Determination of Abraham model solute descriptors for N-Hydroxyphthalimide: an organic compound having a N-Hydroxy (N–OH) functional group. J Solut Chem. 2023;52(8):895–909. doi: 10.1007/s10953-023-01276-1
  • Yao E, Acree WE Jr. Abraham model solute descriptors for favipiravir: Case of tautomeric equilibrium and intramolecular hydrogen-bond formation. Thermo. 2023;3(3):443–451. doi: 10.3390/thermo3030027
  • Benavides D, Longacre L, Varadharajan A, et al. Calculation of Abraham model solute descriptors for 2-naphthoxyacetic acid. Phys Chem Liq. 2023;61(4):264–274. doi: 10.1080/00319104.2023.2207713
  • Motati S, Motati R, Kandi T, et al. Abraham Model descriptors for vitamin K4: prediction of solution, biological and thermodynamic properties. Liquids. 2023;3(4):402–413. doi: 10.3390/liquids3040025
  • Ulrich N, Endo S, Brown TN, et al. UFZ-LSER database v 3.2.1 [Internet]. Leipzig, Germany, Helmholtz Centre for Environmental Research-UFZ; 2017. [cited 2023 27 May]. Available from: http://www.ufz.de/lserd
  • Chung Y, Vermeire FH, Wu H, et al. Group contribution and machine learning approaches to predict Abraham solute parameters, solvation free energy, and solvation enthalpy. J Chem Inf Model. 2022;62(3):433–446. doi: 10.1021/acs.jcim.1c01103
  • [cited 2023 August 1]. Available from: https://rmg.mit.edu/database/solvation/search/
  • Acree WE Jr, Smart K, Abraham MH. Abraham model solute descriptors reveal strong intramolecular hydrogen bonding in 1,4-dihydroxyanthraquinone and 1,8-dihydroxyanthraquinone. Phys Chem Liq. 2018;56(3):416–420. doi: 10.1080/00319104.2017.1407934
  • Feng S, Yao M, Guo S, et al. Understanding the solid-liquid phase equilibrium of 3,5-dimethoxybenzoic acid in thirteen pure solvents by thermodynamic analysis and molecular simulation. J Mol Liq. 2021;332:115882. doi: 10.1016/j.molliq.2021.115882
  • Abraham MH, Acree WE Jr. Equations for the transfer of neutral molecules and ionic species from water to organic phases. J Org Chem. 2010;75:1006–1015. doi: 10.1021/jo902388n
  • Unelius CR, Nordlander G, Nordenhem H, et al. Structure–activity relationships of benzoic acid derivatives as antifeedants for the pine weevil, hylobius abietis. J Chem Ecol. 2006;32(10):2191–2203. doi: 10.1007/s10886-006-9139-3
  • Acree WE Jr, Abraham MH. Solubility of crystalline nonelectrolyte solutes in organic solvents: mathematical correlation of benzil solubilities with the Abraham general solvation model. J Solut Chem. 2002;31(4):293–303. doi: 10.1023/A:1015853220711
  • Fletcher KA, Hernandez CE, Roy LE, et al. Solubility of diphenyl sulfone in organic nonelectrolyte solvents. Comparison of observed versus predicted values based upon the general solvation model. Can J Chem. 1999;77(7):1214–1217. doi: 10.1139/v99-116
  • Blake-Taylor BH, Deleon VH, Acree WE Jr, et al. Mathematical correlation of salicylamide solubilities in organic solvents with the Abraham solvation parameter model. Phys Chem Liq. 2007;45:389–398. doi: 10.1080/00319100701244927
  • Wang H, Zhang W. Solubility of 3,5-dimethoxybenzoic acid, 4-cyanobenzoic acid, 4-acetoxybenzoic acid, 3,5-diaminobenzoic acid, and 2,4-dichlorobenzoic acid in ethanol. J Chem Eng Data. 2009;54(6):1942–1944. doi: 10.1021/je900190n
  • Yao M, Wang L, Feng S, et al. Improving separation efficiency of crystallization by ultrasound-accelerated nucleation: the role of solute diffusion and solvation effect. Sep Purif Technol. 2022;294:121143. doi: 10.1016/j.seppur.2022.121143
  • Bernabei MT, Forni F, Bellei S, et al. Partition coefficients of a series of substituted benzoic acids. Atti Soc Nat Mat Modena. 1980;111:63–72.
  • Abraham MH, McGowan JC. The use of characteristic volumes to measure cavity terms in reversed phase liquid chromatography. Chromatographia. 1987;23(4):243–246. doi: 10.1007/BF02311772
  • Absolv ADME suite 5.0, Advanced Chemistry Development, Inc. Toronto (Ontario) Advanced Chemistry Development, Inc.
  • Hart E, Klein A, Zha O, et al. Determination of Abraham model solute descriptors for monomeric 3,4,5-trimethoxybenzoic acid from experimental solubility data in organic solvents measured at 298.2 K. Phys Chem Liq. 2018;56(3):381–390. doi: 10.1080/00319104.2017.1346097
  • Hoover KR, Stovall DM, Pustejovsky E, et al. Solubility of crystalline nonelectrolyte solutes in organic solvents ? Mathematical correlation of 2-methoxybenzoic acid and 4-methoxybenzoic acid solubilities with the Abraham solvation parameter model. Can J Chem. 2004;82(9):1353–1360. doi: 10.1139/v04-112
  • Zhang K, Abraham MH, Liu X. An equation for the prediction of human skin permeability of neutral molecules, ions and ionic species. Int J Pharm. 2017;521(1–2):259–266. doi: 10.1016/j.ijpharm.2017.02.059
  • Zhang K, Fahr A, Abraham MH, et al. Comparison of lipid membrane–water partitioning with various organic solvent–water partitions of neutral species and ionic species: uniqueness of cerasome as a model for the stratum corneum in partition processes. Int J Pharm. 2015;494(1):1–8. doi: 10.1016/j.ijpharm.2015.08.010
  • Abraham MH. The permeation of neutral molecules, ions, and ionic species through membranes: brain permeation as an example. J Pharm Sci. 2011;100(5):1690–1701. doi: 10.1002/jps.22404
  • Abraham MH. Human Intestinal Absorption—Neutral Molecules and Ionic Species. J Pharm Sci. 2014;103(7):1956–1966. doi: 10.1002/jps.24024
  • Abraham MH, Acree WE Jr. Descriptors for ions and ion-pairs for use in linear free energy relationships. J Chromatograph. 2016;1430:2–14. doi: 10.1016/j.chroma.2015.07.023
  • Allen G, Watkinson JG, Webb KH. An infra-red study of the association of benzoic acid in the vapour phase, and in dilute solution in non-polar solvents. Spectrochim Acta. 1966;22(5):807–814. doi: 10.1016/0371-1951(66)80110-8
  • Ts’ai S-C, Lin W-C. Nuclear magnetic resonance studies on the effect of solvents on the dimerization of benzoic acid. J Chin Chem Soc. 1966;13(4):131–142. doi: 10.1002/jccs.196600016
  • Hasegawa Y, Unno T, Choppin GR. Dimerization and hydration of benzoic acid in wet organic solvents. J Inorg Nucl Chem. 1981;43(9):2154–2158. doi: 10.1016/0022-1902(81)80572-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.