2,138
Views
56
CrossRef citations to date
0
Altmetric
Clinical Focus: Pulmonary and Respiratory Conditions - Review

Immunomodulatory indications of azithromycin in respiratory disease: a concise review for the clinician

, , &
Pages 493-499 | Received 28 Nov 2016, Accepted 19 Jan 2017, Published online: 01 Feb 2017

References

  • Bearden DT, Rodvold KA. Penetration of macrolides into pulmonary sites of infection. Infect Med. 1999;16:480–484.
  • Tamaoki J, Takeyama K, Tagaya E, et al. Effect of clarithromycin on sputum production and its rheological properties in chronic respiratory tract infections. Antimicrob Agents Chemother. 1995;39:1688–1690.
  • Takizawa H, Desaki M, Ohtoshi T, et al. Erythromycin modulates IL-8 expression in normal and inflamed human bronchial epithelial cells. Am J Respir Crit Care Med. 1997;156:266–271.
  • Desaki M, Okazaki H, Sunazuka T, et al. Molecular mechanisms of anti-inflammatory action of erythromycin in human bronchial epithelial cells: possible role in the signaling pathway that regulates nuclear factor-kB activation. Antimicrob Agents Chemother. 2004;48:1581–1585.
  • Li H, Ding-Hui L, Lu-Lu C, et al. Meta-analysis of the adverse effects of long-term azithromycin use in patients with chronic lung diseases. Antimicrob Agents Chemother. 2014;58:511–517.
  • Bailly S, Pocidalo JJ, Fay M, et al. Differential modulation of cytokine production by macrolides: interleukin-6 production is increased by spiramycin and erythromycin. Antimicrob Agents Chemother. 1991;35(10):2016–2019.
  • Stepanic V, Ziher D, Gabelica-Markovic V, et al. Physiochemical profile of macrolides and their comparison with small molecules. Eur J Med Chem. 2012;47:462–472.
  • Wilms EB, Touw DJ, Heijerman HG. Pharmacokinetics of azithromycin in plasma, blood, polymorphonuclear neutrophils and sputum during long-term therapy in patients with cystic fibrosis. Ther Drug Monit. 2006;28(2):219–225.
  • Favre-Bonte S, Kohler T, Van Delden C. Biofilm formation by Pseuodomonas aeruginosa: role of the C4-HSL cell-to-cell signal and inhibition by azithromycin. J Antimicrob Chemother. 2003;52:598–604.
  • Murphy DM, Forrest IA, Corris PA, et al. Azithromycin attenuates effects of lipopolysaccharide on lung allograft bronchial epithelial cells. J Heart Lung Transp. 2008;27(11):1210–1216.
  • Gielen V, Johnston SL, Edwards MR. Azithromycin induces anti-viral responses in bronchial epithelial cells. Eur Respir J. 2010;36(3):646–654.
  • Parnham MJ, Haber VE, Giamarellos-Bourboulis EJ, et al. Azithromycin: mechanisms of action and their relevance for clinical applications. Pharmacol Ther. 2014;143:225–245.
  • Poachanukoon O, Koontongaew S, Monthanapisut P, et al. Macrolides attenuate phorbol ester-induced tumor necrosis factor alpha and mucin production from human airway epithelial cells. Pharmacology. 2014;93(2):92–99.
  • Culic O, Erakovic V, Cepelak I, et al. Azithromycin modulates neutrophil function and circulating inflammatory mediators in healthy human subjects. Eur J Pharmacol. 2002;450(3):277–289.
  • Yamauchi K, Shibata Y, Kimura Y, et al. Azithromycin suppresses interleukin-12p40 expression in lipopolysaccharide and interferon-gamma stimulated macrophages. Int J Biol Sci. 2009;5(7):667–678.
  • Stellari F, Sala A, Donofrio G, et al. Azithromycin inhibits nuclear factor-k-B activation during lung inflammation: an in vivo imaging study. Pharmacol Res Perspect. 2014;2(5):e00058. DOI:10.1002/prp2.58
  • Kanoh S, Rubin B. Mechanism of action and clinical application of macrolides as immunomodulatory medications. Clin Microbiol Rev. 2010;23(3):590–615.
  • Bosnar M, Cuzic S, Bosnjak B, et al. Azithromycin inhibits macrophage interleukin-1B production through inhibition of activator protein-1 in lipoplysaccharide induced murine pulmonary neutorphilia. Int Immunopharmacol. 2011;11(4):424–434.
  • Hodge S, Hodge G, Brozyna S, et al. Azithromycin increases phagocytosis of apoptotic bronchial epithelial cells by alveolar macrophages. Eur Respir J. 2006;28(3):486–495.
  • Bonfield TL, Panuska JR, Konstan MW, et al. Inflammatory cytokines in cystic fibrosis lungs. Am J Respir Crit Care Med. 1995;152(6):2111–2118.
  • Hoffmann N, Lee B, Hentzer M, et al. Azithromycin blocks quorum sensing and alginate polymer formation and increases the sensitivity to serum and stationary-growth-phase killing of Pseudomonas aeruginosa and attenuates chronic P. aeruginosa lung infection in Cftr(-/-) mice. Antimicrob Agents Chemother. 2007;10:3677–3687.
  • Cohen-Cymberknoh M, Kerem E, Ferkol T, et al. Airway inflammation in cystic fibrosis: molecular mechanisms and clinical implications. Thorax. 2013;68:1157–1162.
  • Sagel SD, Wagner BD, Anthony MM, et al. Sputum biomarkers of inflammation and lung function decline in children with cystic fibrosis. Am J Respir Crit Care Med. 2012;186:857–865.
  • Imperi F, Leoni L, Visca P. Antivirulence activity of azithromycin in Pseudomonas aerugoinosa. Front Microbiol. 2014;5:178.
  • Ciofu O, Tolker-Nielsen T, Jensen PO, et al. Antimicrobial resistance, respiratory tract infections and role of biofilms in lung infections in cystic fibrosis patients. Adv Drug Deliv Rev. 2014;404(14):282–288.
  • Parnham M, Haber VE, Giamarellos-Bourboilis EJ, et al. Azithromycin: mechanisms of action and their relevance for clinical applications. Pharmacol Ther. 2014;143:225–245.
  • Principi N, Blasi F, Esposito S. Azithromycin use in patients with cystic fibrosis. Eur J Clin Microbiol Infect Dis. 2015;34:1071–1079.
  • Southern K, Barker P, Solis-Moya A, et al. Macrolide antibiotics for cystic fibrosis. Cochrane Database Syst Rev. 2012;14(11):CD002203.
  • Saiman L, Anstead M, Mayer-Hamblett N, et al. Effect of azithromycin on pulmonary function in patients with cystic fibrosis uninfected with Pseudomonas aeruginosa. JAMA. 2010;303:1707–1714.
  • Samson C, Tamalet A, Thien H, et al. Long-term effects of azithromycin in patients with cystic fibrosis. Respir Med. 2016;117:1–6.
  • Flume PA, O’Sullivan BP, Robinson KA, et al.; Cystic Fibrosis Foundation, Pulmonary Therapies Committee. Cystic fibrosis pulmonary guidelines: chronic medications for maintenance of lung health. Am J Respir Crit Care Med. 2007;176(10):957–969.
  • Yanagihara K, Kadoto J, Kohno S. Diffuse panbronchiolitis—pathophysiology and treatment mechanisms. Int J Antimicrob Agents. 2001;18:S83–S87.
  • Kudoh S, Keicho N. Diffuse panbronchiolitis. Clin Chest Med. 2012;33:297–305.
  • Lin X, Lu J, Yang M, et al. Macrolides for diffuse panbronchiolitis. Cochrane Database Syst Rev. 2015;1:CD007716.
  • Schultz M. Macrolide activities beyond their antimicrobial effects: macrolides in diffuse panbronchiolitis and cystic fibrosis. J Antimicrob Chemother. 2004;54:21–28.
  • Kudoh S, Azuma A, Yamamoto M, et al. Improvement of survival in patients with diffuse panbronchiolitis treated with low-dose erythromycin. Am J Respir Crit Care Med. 1998;157:1829–1832.
  • Hui D, Yan F, Chen RH. The effects of azithromycin on patients with diffuse panbronchiolitis: a retrospective study of 29 cases. J Thoracic Dis. 2013;5:613–617.
  • Li H, Zhou Y, Fan F, et al. Effect of azithromycin on patients with diffuse panbronchiolitis: retrospective study of 51 cases. Intern Med J. 2011;50:1663–1669.
  • Estenne M, Maurer JR, Boehler A, et al. Bronchiolitis obliterans syndrome 2001: an update of the diagnostic criteria. J Heart Lung Transplan. 2002;21:297–310.
  • Kingah PL, Muma G, Soubani A. Azithromycin improves lung function in patients with post-lung transplant bronchiolitis obliterans syndrome: a meta-analysis. Clin Transplant. 2014;28:906–910.
  • Corris P, Ryan V, Small T, et al. A randomized controlled trial of azithromycin therapy in bronchiolitis obliterans syndrome (BOS) post lung transplantation. Thorax. 2015;70:442–450.
  • Yadav H, Peters SG, Keogh KA, et al. Azithromycin for the treatment of obliterative bronchiolitis after hematopoietic stem cell transplantation: a systemic review and meta-analysis. Biol Blood Marrow Transplant. 2016;22(12):2264–2269.
  • Cheng GS, Storer B, Chien JW, et al. Lung function trajectory in bronchiolitis obliterans syndrome after allogeneic hematopoietic cell transplantation. Ann Am Thorac Soc. 2016 Nov;13(11):1932–1939.
  • Vandermeulen E, Verleden SE, Ruttens D, et al. BAL neutrophilia in azithromycin-treated lung transplant recipients: clinical significance. Transpl Immunol. 2015;33:37–44.
  • Barker AF, Bergeron A, Rom WN, et al. Obliterative bronchiolitis. NEJM. 2014;370:1820–1828.
  • Lam DC, Lam B, Wong MK, et al. Effects of azithromycin in bronchiolitis obliterans syndrome after hematopoietic SCT—a randomized double-blinded placebo-controlled study. Bone Marrow Transplant. 2011;46:1551–1556.
  • Soubani AO, Uberti JP. Bronchiolitis obliterans following haematopoietic stem cell transplantation. Eur Respir J. 2007;29:1007–1019.
  • Haworth CS, Bilton DB, Elborn JS. Long-term macrolide maintenance therapy in non-CF bronchiectasis: evidence and questions. Respir Med. 2014;108:1397–1408.
  • Verleden GM, Vos R, Dupont L, et al. Are we near to an effective drug treatment for bronchiolitis obliterans? Expert Opin Pharmacother. 2014;15:2117–2120.
  • Khalid M, Al Saghir A, Saleemi S, et al. Azithromycin in bronchiolitis obliterans complicating bone marrow transplantation: a preliminary study. Eur Respir J. 2005;25:490–493.
  • Fjaellegaard K, Sin MD, Browatzki A, et al. Antibiotic therapy for stable non-CF bronchiectasis in adults—a systematic review. Chronic Respir Dis. 2016;pii:1479972316661923. [Epub ahead of print]
  • Milliron B, Henry TS, Veeraraghavan S, et al. Bronchiectasis: mechanisms and imaging clues of associated common and uncommon diseases. Radiographics. 2015;35(4):1011–1030.
  • McShane PJ, Naureckas ET, Tino G, et al. Non-cystic fibrosis bronchiectasis. Am J Respir Crit Care Med. 2013;188(6):647–656.
  • Serisier DJ. The evidence base for non-CF bronchiectasis is finally evolving. Respirology. 2014;19(3):295–297.
  • Wong C, Jayaram L, Karalus N, et al. Azithromycin for prevention of exacerbations in non-cystic fibrosis bronchiectasis (EMBRACE): a randomized, double-blind, placebo-controlled trial. Lancet. 2012;380:660–667.
  • Altenburg J, De Graaff CS, Stienstra Y, et al. Effect of azithromhcin maintenance treatment on infectious exacerbations among patients with non-cystic fibrosis bronchiectasis. JAMA. 2013;309(12):1251–1259.
  • Suissa S, Dell’Aniello S, Ernst P. Long-term natural history of chronic obstructive pulmonary disease: severe exacerbations and mortality. Thorax. 2012;67:957–963.
  • Miravitlles M, Murio C, Guerrero T, et al. Pharmacoeconomic evaluation of acute exacerbations of chronic bronchitis and COPD. Chest. 2002;121:1449–1455.
  • Spagnolo P, Fabbri L, Bush A. Long-term macrolide treatment for chronic respiratory disease. Eur Respir J. 2012;42:239–251.
  • Ni W, Shao X, Cai X, et al. Prophylactic use of macrolide antibiotics for the prevention of chronic obstructive pulmonary disease exacerbation: a meta-analysis. PLoS One. 2015;10(3):e0121257.
  • Albert RK, Connett J, Bailey W, et al. Azithromycin for prevention of exacerbations of COPD. NEJM. 2011;365:689–697.
  • Uzun S, Djamin R, Kluytmans J, et al. Azithromycin maintenance treatment in patients with frequent exacerbations of chronic obstructive pulmonary disease (COLUMBUS): a randomized, double-blind, placebo-controlled trial. Lancet Respir Med. 2014;2:361–368.
  • Blasi F, Bonardi D, Aliberti S, et al. Long-term azithromycin use in patients with chronic obstructive pulmonary disease and tracheostomy. Pulm Pharmacol Ther. 2010;23:200–207.
  • Walkey AJ, Wiener RS. Macrolide antibiotics and survival in patients with acute lung injury. Chest. 2014;141(5):1153–1159.
  • Kawamura K, Ichikado K, Takaki M, et al. Efficacy of azithromycin in sepsis-associated acute respiratory distress syndrome: a retrospective study and propensity score analysis. SpringerPlus. 2016;5:1193.
  • Richeldi L, Ferrara G, Fabbri LM, et al. Macrolides for chronic asthma. Cochrane Database Syst Rev. 2005;4:CD002997.
  • Johnston SL, Szigeti M, Cross M, et al. Azithromycin for acute exacerbations of asthma: the AZALEA randomized clinical trial. JAMA Intern Med. 2016;176(11):1630–1637.
  • Fokkens WJ, Lund VJ, Mullol J, et al. European position paper on rhinosinusitis and nasal polyps 2012. Rhinol Suppl. 2012;23:1–298.
  • Havlir DV, Dube MP, Sattler FR, et al. Prophylaxis against disseminated Mycobacterium avium complex with weekly azithromycin, daily rifabutin, or both. NEJM. 1996;335:392–398.
  • Broad J, Sanger G. The antibiotic azithromycin is a motilin receptor agonist in human stomach: comparison with erythromycin. Brit Pharmacol. 2013;168:1859–1867.
  • Grayston JT, Kronmal R, Jackson J, et al. Azithromycin for the secondary prevention of coronary events. NEJM. 2005;352(16):1637–1645.
  • Tramper-Stranders G, Wolfs T, Fleer A, et al. Maintenance azithromycin treatment in pediatric patients with cystic fibrosis: long-term outcomes related to macrolide resistance and pulmonary function. Pediatr Infect Dis J. 2007;26(1):8–12.
  • Binder A, Adjemian J, Olivier K, et al. Epidemiology of nontuberculous mycobacterial infections and associated chronic macrolide use among persons with cystic fibrosis. Am J Respir Crit Care Med. 2013;188(7):807–812.
  • Balloy V, Deveaux A, Lebeaux D, et al. Azithromycin analogue CSY0073 attenuates lung inflammation induced by LPS challenge. Brit Pharmacol. 2014;171:1783–1794.
  • Broad J, Sanger G. The antibiotic azithromycin in a motilin receptor agonist in human stomach: comparison with erythromycin. Brit Pharmacol. 2013;168:1859–1867.
  • Hancox J. Azithromycin, cardiovascular risks, QTc interval prolongation, torsade de pointes, and regulatory issues: a narrative review based on the study of case reports. Ther Adv Infect Dis. 2013;5:155–165.
  • Ray WA, Murray KT, Hall K, et al. Azithromycin and the risk of cardiovascular death. NEJM. 2012;366(20):1881–1890.
  • Svanstrom H, Pasternak B, Hviid A. Use of azithromycin and death from cardiovascular causes. NEJM. 2013;368(18):1704–1712.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.