286
Views
14
CrossRef citations to date
0
Altmetric
Clinical Features - Review

Perspective on current and emerging drugs in the treatment of acute and chronic toxoplasmosis

& ORCID Icon
Pages 589-596 | Received 07 Jun 2019, Accepted 09 Aug 2019, Published online: 26 Aug 2019

References

  • Ben-Harari RR, Connolly MP. High burden and low awareness of toxoplasmosis in the United States. Postgrad Med. 2019;131:103–108.
  • WHO: World Health Organization. WHO library cataloguing-in-publication data: neglected tropical diseases, hidden successes, emerging opportunities. WHO/HTM/NTD/2009.2». 1 Tropical medicine World Health Organization; 2009. ISBN 978 92 4 159870 5 (NLM classi?cation: WC 680). Available from: https://apps.who.int/iris/bitstream/handle/10665/44214/9789241598705_eng.pdf;sequence=1
  • CDC (Centers for Disease Control). Toxoplasmosis: neglected parasitic infections of the United States; [ cited 2018 April]. Available from: https://www.cdc.gov/parasites/toxoplasmosis/index.html
  • Jones JL, Parise ME, Fiore AE. Neglected parasitic infections in the United States: toxoplasmosis. Am J Trop Med Hyg. 2014 May 7;90(5):794–799.
  • Batz M, Hoffmann S, Morris JG Jr. Disease-outcome trees, EQ-5D scores, and estimated annual losses of quality-adjusted life years (QALYs) for 14 foodborne pathogens in the United States. Foodborne Pathog Dis. 2014 May;11(5):395–402.
  • Jones JL, Dubey JP. Foodborne toxoplasmosis. Clinl Infect Dis. 2012;55(6):845–851.
  • Jones JL, Roberts JM. Toxoplasmosis hospitalizations in the United States, 2008, and trends, 1993–2008. Clin Infect Dis. 2012 Apr;54(7):e58–61.
  • Scallan E, Hoekstra RM, Angulo FJ, et al. Foodborne illness acquired in the United States—Major pathogens. EID. 2011;17(1):7–15.
  • Montoya JG, Boothroyd JC, Kovacs JA. Toxoplasma gondii. In: Gerald M, Bennett JE, Dolin R, editors. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 7th ed. Philadelphia, PA: Churchill Livingstone Elsevier; 2015. p. 3122–3153.
  • JL J, GN H. Short report: annual burden of ocular toxoplasmosis in the United States. Am J Trop Med Hyg. 2010;82(3):464 465.
  • Konstantinovic N, Guegan H, Stäjner T, et al. Treatment toxoplasmosis: current options and future perspectives. Food Waterborne Parasitol. 2019;15:e00036. in press.
  • McAuley JB. Congenital toxoplasmosis. J Pediatr Infect Dis Soc. 2014;3(Suppl 1):S30–S35.
  • Kieffer F, Wallon M. Congenital toxoplasmosis. Handb Clin Neurol. 2013;112:1099–1101.
  • Belk K, Connolly MP, Schlesinger L, et al. Patient and treatment pathways for toxoplasmosis in the United States: data analysis of the vizient health systems data from 2011 to 2017. Pathog Glob Health. 2018;112:428–437.
  • Maldonado YA, Read JS, COMMITTEE ON INFECTIOUS DISEASES. Diagnosis, treatment, and prevention of congenital toxoplasmosis in the United States. Pediatrics. 2017;139:e20163860.
  • Montoya JG, Boothroyd JC, Kovacs JA. Toxoplasma gondii in Mandell Douglas, and Bennett’s principles and practice of infectious diseases. 8th. GL M, JE B, Dolin R, editors. Churchill Philadelphia: Livingstone Elsevier; 2105.
  • de-la-Torre A, Stanford M, Curi A, et al. Therapy for ocular toxoplasmosis. Ocul Immunol Inflamm. 2011 Oct;19(5):314–320.
  • Montoya JG, Liesenfeld O. Toxoplasmosis. Lancet. 2004;363: 1965–1976. Stanford M, Curi A, Jaffe GJ, Gomez-Marin JE. 2011. Therapy for ocular toxoplasmosis. Ocul Immunol Inflamm.;19:314–320.
  • Montoya JG, Remington JS. Management of Toxoplasma gondii infection during pregnancy. Clin Infect Dis. 2008;47:554–566.
  • Van der Ven AJAM, Schoondermark-van de Ven EME, Camps WIL, et al. Anti-toxoplasma effect of pyrimethamine, trimethoprim and sulphonamides alone and in combination: implications for therapy. J Antimicrobial Chemother. 1996;38:75–80.
  • Allegra CJ, Boorman D, Kovacs JA, et al. Interaction of sulfonamide and sulfone compounds with toxoplasma gondii dihydropteroate synthase. J Clin Invest. 1990;85:371–379.
  • Anderson AC. Targeting DHFR in parasitic protozoa. Drug Discov Today. 2005;10:121–128.
  • Sharma M, Chauhan PMS. Dihydrofolate reductase as a therapeutic target for infectious diseases: opportunities and challenges. Future Med Chem. 2012 Jul 16;4(10): Review. Published Online. DOI:10.4155/fmc.12.68
  • Yun M-K, Wu Y, Li Z, et al. Catalysis and sulfa drug resistance in dihydropteroate synthase: crystal structures reveal the catalytic mechanism of DHPS and the structural basis of sulfa drug action and resistance. Science. 2012 March 2;335(6072):1110–1114.
  • Ben-Harari RR, Goodwin E, Casoy J. Adverse event profile of pyrimethamine-based therapy in toxoplasmosis: a systematic review. Drugs R D. 2017;1–22.
  • Frenkel JK, Weber RW, Lunde MN. Acute toxoplasmosis: effective treatment with pyrimethamine, sulfadiazine, leucovorin calcium and yeast. JAMA. 1960;173:1471–1476.
  • Freund YR, Dabbs J, Creek MR, et al. Synergistic bone marrow toxicity of pyrimethamine and zidovudine in murine in vivo and in vitro models: mechanism of toxicity. Toxicol Appl Pharmacol. 2002;181:16–26.
  • Visentin M, Zhao R, Goldman DI. The antifolates. Hematol Oncol Clin North Am. 2012 June;26(3):629–652.
  • Macy E, Poon K-YT. Self-reported antibiotic allergy incidence and prevalence: age and sex effects. Am J Med. 2009;122:778.e1–7.
  • Wulf NR, Matuszewski KA. Sulfonamide cross-reactivity: is there evidence to support broad cross-allergenicity? Am J Health Syst Pharm. 2013;70:1483–1494.
  • Connolly MP, Haitsma G, Hernández AV, et al. Systematic review and meta-analysis of secondary prophylaxis for prevention of HIV-related toxoplasmic encephalitis relapse using trimethoprim-sulfamethoxazole. Pathog Glob Health. 2017a;111:327–331.
  • Connolly MP, Goodwin E, Schey C, et al. Toxoplasmic encephalitis relapse rates with pyrimethamine-based therapy: systematic review and meta-analysis. Pathog Glob Health. 2017b;111:31–44.
  • Alday PH, Doggett JS. Drugs in development for toxoplasmosis: advances, challenges, and current status. Drug Des Dev Ther. 2017;11:273–293.
  • Hopper AT, Brockman A, Wise A, et al. Discovery of selective Toxoplasma gondii dihydrofolate reductase inhibitors for the treatment of toxoplasmosis. J Med Chem. 2019;2019(62):1562–1576.
  • Doggett JS, Nilsen A, Forquer I, et al. Endochin-like quinolones are highly efficacious against acute and latent experimental toxoplasmosis. Proc Natl Acad Sci U S A. 2012;109:15936–15941.
  • Antczak M, Dzitko K, Dlugonska H. Review human toxoplasmosis – searching for novel chemotherapeutics. Biomed Pharmacother. 2016;82:677–684.
  • McFarland MM, Zach SJ, Wang X, et al. Review of experimental compounds demonstrating anti-Toxoplasma activity. Antimicrob Agents Chemother. 2016;60:7017–7034.
  • Murata Y, Sugi T, Weiss LM, et al. Identification of compounds that suppress Toxoplasma gondii tachyzoites and bradyzoites: research article. PLoS ONE. 2017;12(6):e0178203.
  • Mui EJ, Schiehser GA, Milhous WK, et al. Novel Triazine JPC-2067-B inhibits Toxoplasma gondii in vitro and in vivo. PLoS Negl Trop Dis. 2008;2(3):e190.
  • Welsch ME, Zhou J, Gao Y, et al. Discovery of potent and selective leads against Toxoplasma gondii dihydrofolate reductase via structure-based design. ACS Med Chem Lett. 2016;7(12):1124–1129.
  • Gangjee A, Adair OO, Pagley M, et al. N9-substituted 2,4-diaminoquinazolines: synthesis and biological evaluation of lipophilic inhibitors of pneumocystis carinii and Toxoplasma gondii dihydrofolate reductase. J Med Chem. 2008;51:6195–6200.
  • Gangjee A, Lin X, Biondo LR, et al. CoMFA analysis of tgDHFR and rlDHFR based on antifolates with 6-5 fused ring system using the all-orientation search (AOS) routine and a modified cross validated r2-guided region selection (q2-GRS) routine and its initial application. Bioorg Med Chem. 2010;18:1684–1701.
  • Bag S, Tawari NR, Degani MS, et al. Design, synthesis, biological evaluation and computational investigation of novel inhibitors of dihydrofolate reductase of opportunistic pathogens. Bioorg Med Chem. 2010;18:3187–3197.
  • Chio LC, Queener SF. Identification of highly potent and selective inhibitors of Toxoplasma gondii dihydrofolate reductase. Antimicrob Agents Chemother. 1993;37:1914–1923.
  • Piper JR, Johnson CA, Krauth CA, et al. Lipophilic antifolates as agents against opportunistic infections. 1. Agents superior to trimetrexate and piritrexim against Toxoplasma gondii and pneumocystis carinii in in vitro evaluations. J Med Chem. 1996;39:1271–1280.
  • Rosowsky A, Cody V, Galitsky N, et al. Structure-based design of selective inhibitors of dihydrofolate reductase: synthesis and antiparasitic activity of 2,4-diaminopteridine analogues with a bridged diarylamine side chain. J Med Chem. 1999;42:4853–4860.
  • Montazeri M, Mehrzadi S, Mehdi S, et al. Activities of anti-toxoplasma drugs and compounds against tissue cysts in the last three decades (1987 to 2017), a systematic review. Parasitol Res. 2018;117:3045.
  • Zwicker JD, Diaz NA, Guerra AJ, et al. Optimization of dipeptidic inhibitors of cathepsin L for improved Toxoplasma gondii selectivity and CNS permeability. Bioorg Med Chem Lett. 2018;28:1972–1980.
  • Lourido S, Shuman J, Zhang C, et al. Calcium-dependent protein kinase 1 is an essential regulator of exocytosis in toxoplasma. Nature. 2010;465:359–362.
  • Sugi T, Kato K, Kobayashi K, et al. Use of the kinase inhibitor analog 1NM-PP1 reveals a role for Toxoplasma gondii CDPK1 in the invasion step. Eukaryot Cell. 2010;9:667–670.
  • Child MA, Garland M, Foe I, et al. Toxoplasma DJ-1 regulates organelle secretion by a direct interaction with calcium-dependent protein kinase 1. mBio. 2017;8:e02189–16. https://doi.org/10.1128/mBio.02189-16
  • Long S, Wang Q, Sibley LD. Analysis of noncanonical calcium dependent protein kinases in Toxoplasma gondii by targeted gene deletion using CRISPR/Cas9. Infect Immun. 2019;84:1262–1273.
  • Cardew EM, Verlinde CLMJ, Pohl E. The calcium-dependent protein kinase 1 from Toxoplasma gondii as target for structure-based drug design. Parasitology. 2018;145:210–218.
  • Ojo KK, Larson ET, Keyloun KR, et al. Toxoplasma gondii calcium-dependent protein kinase 1 inhibitor. Nat Struct Mol Biol. 2010;17:602–607.
  • Moine E, Dimier-Poisson I, Enguehard-Gueiffier C, et al. Development of new highly potent imidazo[1,2-b]pyridazines targeting Toxoplasma gondii calcium-dependent protein kinase 1. Europ J Med Chem. 2015a;105:80–105.
  • Moine E, Denevault-Sabourin C, Debierre-Grockiego F, et al. A small-molecule cell-based screen led to the identification of biphenylimidazoazines with highly potent and broad-spectrum anti-apicomplexan activity. Europ J Med Chem. 2015b;9:386–400.
  • Moine E, Moiré N, Dimier-Poisson I, et al. Imidazo[1,2-b]pyridazines targeting Toxoplasma gondii calcium-dependent protein kinase 1 decrease the parasite burden in mice with acute toxoplasmosis. Int J Parasitol. 2018;48:561–568.
  • Hui R, El Bakkouri M, Sibley LD. Designing selective inhibitors for calcium-dependent protein kinases in apicomplexans. Trends Pharmacol Sci. 2015;36:452–460.
  • Rutaganira FU, Barks J, Dhason MS, et al. Inhibition of calcium dependent protein kinase 1 (CDPK1) by pyrazolopyrimidine analogs decreases establishment and reoccurrence of central nervous system disease by toxoplasma gondii. J Med Chem. 2017;60:9976–9989.
  • Huang W, Ojo KK, Zhang Z, et al. SAR studies of 5-aminopyrazole-4-carboxamide analogues as potent and selective inhibitors of Toxoplasma gondii CDPK1. ACS Med Chem Lett. 2015;6:1184–1189.
  • Doggett JS, Ojo KK, Fan E, et al. Bump Kinase Inhibitor 1294 treats established Toxoplasmosis gondii infection. Antimicrob Agents Chemother. 2014 June;58(6):3547–3549.
  • Zhang Z, Ojo KK, Johnson SM, et al. Benzoylbenzimidazole-based selective inhibitors targeting Cryptosporidium parvum and Toxoplasma gondii calcium-dependent protein kinase-1. Bioorg Med Chem Lett. 2012;22:5264–5267.
  • Lourido S, Zhang C, Lopez MS, et al. Optimizing small molecule inhibitors of calcium-dependent protein kinase 1 to prevent infection by Toxoplasma gondii. J Med Chem. 2013;56(7):3068–3077.
  • Murphy RC, Ojo KK, Larson ET, et al. Discovery of potent and selective inhibitors of CDPK1 from C. parvum and T. gondii. ACS Med Chem Lett. 2010;1:331–335.
  • Johnson SM, Murphy RC, Geiger JA, et al. Development of Toxoplasma gondii calcium-dependent protein kinase 1 (TgCDPK1) inhibitors with potent anti-toxoplasma activity. J Med Chem. 2012;55:2416–2426.
  • Zhang Z, Ojo KK, Vidadala R, et al. The apicomplexan plastid and its evolution. CMLS. 2011;68:1285–1296.
  • Vidadala RS, Rivas KL, Ojo KK, et al. Development of an orally available and central nervous system (CNS) penetrant Toxoplasma gondii calcium-dependent protein kinase 1 (TgCDPK1) inhibitor with minimal human ether-a-go-go-related gene (hERG) activity for the treatment of toxoplasmosis. J Med Chem. 2016;59:6531–6546.
  • Hulverson MA, Vinayak S, Choi R, et al. Bumped-kinase inhibitors for cryptosporidiosis therapy. J Infect Dis. 2017;215(8):1275–1284.
  • CDC: Resource for health professionals, diagnosis and treatment guidelines for toxoplasmosis; [ cited 2019 April]. Available from: https://www.cdc.gov/parasites/toxoplasmosis/health_professionals/index.html.
  • Department of Health and Human Services (USA). AIDsInfo, guidelines for the prevention and treatment of opportunistic infections in adults and adolescents with HIV; [ cited 2019 April]. Available from: https://aidsinfo.nih.gov/guidelines/html/4/adult-and-adolescent-opportunistic-infection/322/toxo
  • Brown AS. Further evidence of infectious insults in the pathogenesis and pathophysiology of schizophrenia. Am J Psychiatry. 2011;168:764–766.
  • REVIEW: FJ. Influence of latent Toxoplasma infection on human personality, physiology and morphology: pros and cons of the Toxoplasma–human model in studying the manipulation hypothesis. J Exp Biol. 2013;216:127–133.
  • Flegr J. Schizophrenia and Toxoplasma gondii: an undervalued association? Expert Rev Anti Infect Ther. 2015;13:817–820.
  • Sutterland AL, Fond G, Kuin A, et al. Beyond the association. Toxoplasma gondii in schizophrenia, bipolar disorder, and addiction: systematic review and meta-analysis. Acta Psychiatr Scand. 2015;132:161–179.
  • Jeffers V, Tampaki Z, Kim K, et al. A latent ability to persist: differentiation in Toxoplasma gondii. Cell Mol Life Sci. 2018;75:2355–2373.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.