1,582
Views
34
CrossRef citations to date
0
Altmetric
Clinical Focus: Neurological & Psychiatric Disorders - Review

Alzheimer’s dementia: pathogenesis and impact of cardiovascular risk factors on cognitive decline

, &
Pages 415-422 | Received 03 Mar 2019, Accepted 16 Aug 2019, Published online: 27 Aug 2019

References

  • Facts and Figures [Internet]. Alzheimer’s Disease and Dementia; [cited 2019 Jun 21]. Available from: https://alz.org/alzheimers-dementia/facts-figures.
  • Satizabal CL, Beiser AS, Chouraki V, et al. Incidence of dementia over three decades in the framingham heart study. N Engl J Med. 2016;374:523–532.
  • Noble JM, Schupf N, Manly JJ, et al. Secular Trends in the incidence of dementia in a multi-ethnic community. J Alzheimers Dis. 2017;60:1065–1075.
  • Kivipelto M, Solomon A, Ahtiluoto S, et al. The Finnish geriatric intervention study to prevent cognitive impairment and disability (FINGER): study design and progress. Alzheimers Dement. 2013;9:657–665.
  • Haan MN, Wallace R. Can dementia be prevented? Brain aging in a population-based context. Annu Rev Public Health. 2004;25:1–24.
  • Bature F, Guinn B-A, Pang D, et al. Signs and symptoms preceding the diagnosis of Alzheimer’s disease: a systematic scoping review of literature from 1937 to 2016. BMJ Open. 2017;7:e015746.
  • Alzheimer’s Disease Fact Sheet [Internet]. National Institute on Aging; [cited 2019 Jun 22]. Available from: https://www.nia.nih.gov/health/alzheimers-disease-fact-sheet.
  • De-Paula VJ, Radanovic M, Diniz BS, et al. Alzheimer’s disease. Subcell Biochem. 2012;65:329–352.
  • Cardiovascular diseases (CVDs) [Internet]; [cited 2019 Jun 22]. Available from: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).
  • Diseases I of M (US) C on a NSS for C and SC. Cardiovascular Disease [Internet]. National Academies Press (US); 2011 [cited 2019 Jun 22]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK83160/.
  • de la Torre JC. Pathophysiology of neuronal energy crisis in Alzheimer’s disease. Neurodegener Dis. 2008;5:126–132.
  • de la Torre JC. Critically attained threshold of cerebral hypoperfusion: can it cause Alzheimer’s disease? Ann N Y Acad Sci. 2000;903:424–436.
  • Postiglione A, Lassen NA, Holman BL. Cerebral blood flow in patients with dementia of Alzheimer’s type. Aging (Albany NY). 1993;5:19–26.
  • Tomek A, Urbanová B, Hort J. Utility of transcranial ultrasound in predicting Alzheimer’s disease risk. J Alzheimers Dis. 2014;42(Suppl 4):S365–374.
  • Mazza M, Marano G, Traversi G, et al. Primary cerebral blood flow deficiency and Alzheimer’s disease: shadows and lights. J Alzheimers Dis. 2011;23:375–389.
  • Brenowitz WD, Nelson PT, Besser LM, et al. Cerebral amyloid angiopathy and its co-occurrence with Alzheimer’s disease and other cerebrovascular neuropathologic changes. Neurobiol Aging. 2015;36:2702–2708.
  • Qi X, Ma J. The role of amyloid beta clearance in cerebral amyloid angiopathy: more potential therapeutic targets. Transl Neurodegener. [Internet]. 2017 [cited 2019 Jun 22];6. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5559841/
  • Arvanitakis Z, Leurgans SE, Wang Z, et al. cerebral amyloid angiopathy pathology and cognitive domains in older persons. Ann Neurol. 2011;69:320–327.
  • Zhang X-M, Cai Y, Xiong K, et al. BACE1 elevation in transgenic mouse models of Alzheimer’s disease is associated with synaptic/axonal pathology and amyloidogenesis: Implication for neuritic plaque development. Eur J Neurosci. 2009;30:2271–2283.
  • Sadleir KR, Kandalepas PC, Buggia-Prévot V, et al. Presynaptic dystrophic neurites surrounding amyloid plaques are sites of microtubule disruption, BACE1 elevation, and increased Aβ generation in Alzheimer’s disease. Acta Neuropathol. 2016;132:235–256.
  • Ye X, Feng T, Tammineni P, et al. Regulation of synaptic amyloid-β generation through BACE1 retrograde transport in a mouse model of Alzheimer’s disease. J Neurosci. 2017;37:2639–2655.
  • Li J-M, Huang -L-L, Liu F, et al. Can brain impermeable BACE1 inhibitors serve as anti-CAA medicine? BMC Neurol. 2017;17:163.
  • Yan -X-X, Ma C, Gai W-P, et al. Can BACE1 inhibition mitigate early axonal pathology in neurological diseases? J Alzheimers Dis. 2014;38:705–718.
  • Egan MF, Kost J, Voss T, et al. Randomized trial of verubecestat for prodromal Alzheimer’s disease. N Engl J Med. 2019;380:1408–1420.
  • Rabin JS, Yang H-S, Schultz AP, et al. Vascular risk and β-amyloid are synergistically associated with cortical tau. Ann Neurol. 2019;85:272–279.
  • Bennett RE, Robbins AB, Hu M, et al. Tau induces blood vessel abnormalities and angiogenesis-related gene expression in P301L transgenic mice and human Alzheimer’s disease. Proc Natl Acad Sci USA. 2018;115:E1289–E1298.
  • Castillo-Carranza DL, Nilson AN, Van Skike CE, et al. Cerebral microvascular accumulation of tau oligomers in Alzheimer’s disease and related tauopathies. Aging Dis. 2017;8:257–266.
  • Li H, Liu -C-C, Zheng H, et al. Amyloid, tau, pathogen infection and antimicrobial protection in Alzheimer’s disease -conformist, nonconformist, and realistic prospects for AD pathogenesis. Transl Neurodegener. 2018;7:34.
  • Moir RD, Lathe R, Tanzi RE. The antimicrobial protection hypothesis of Alzheimer’s disease. Alzheimers Dement. 2018;14:1602–1614.
  • Xing C-Y, Tarumi T, Liu J, et al. Distribution of cardiac output to the brain across the adult lifespan. J Cereb Blood Flow Metab. 2017;37:2848–2856.
  • Claassen JAHR, Zhang R. Cerebral autoregulation in Alzheimer’s disease. J Cereb Blood Flow Metab. 2011;31:1572–1577.
  • Roy B, Woo MA, Wang DJJ, et al. Reduced regional cerebral blood flow in patients with heart failure. Eur J Heart Fail. 2017;19:1294–1302.
  • Lee S, Viqar F, Zimmerman ME, et al. White matter hyperintensities are a core feature of Alzheimer’s disease: evidence from the dominantly inherited Alzheimer network. Ann Neurol. 2016;79:929–939.
  • Brickman AM, Guzman VA, Gonzalez-Castellon M, et al. Cerebral autoregulation, beta amyloid, and white matter hyperintensities are interrelated. Neurosci Lett. 2015;592:54–58.
  • Niwa K, Kazama K, Younkin L, et al. Cerebrovascular autoregulation is profoundly impaired in mice overexpressing amyloid precursor protein. Am J Physiol Heart Circ Physiol. 2002;283:H315–323.
  • Frey A, Sell R, Homola GA, et al. Cognitive deficits and related brain lesions in patients with chronic heart failure. JACC Heart Fail. 2018;6:583–592.
  • Debette S, Markus HS. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ. 2010;341:c3666.
  • Kumar R, Yadav SK, Palomares JA, et al. Reduced regional brain cortical thickness in patients with heart failure. PLoS ONE. 2015;10:e0126595.
  • Shin M-S, An M, Kim S, et al. Concomitant diastolic dysfunction further interferes with cognitive performance in moderate to severe systolic heart failure. PLoS ONE. 2017;12:e0184981.
  • Erkelens CD, van der Wal HH, de Jong BM, et al. Dynamics of cerebral blood flow in patients with mild non-ischaemic heart failure. Eur J Heart Fail. 2017;19:261–268.
  • Loncar G, Bozic B, Lepic T, et al. Relationship of reduced cerebral blood flow and heart failure severity in elderly males. Aging Male. 2011;14:59–65.
  • Jefferson AL, Beiser AS, Himali JJ, et al. Low cardiac index is associated with incident dementia and Alzheimer disease: the Framingham Heart Study. Circulation. 2015;131:1333–1339.
  • Jefferson AL, Liu D, Gupta DK, et al. Lower cardiac index levels relate to lower cerebral blood flow in older adults. Neurology. 2017;89:2327–2334.
  • Nicolai G, Larsen Fin S, Søren B, et al. Cerebral blood flow in patients with chronic heart failure before and after heart transplantation. Stroke. 2001;32:2530–2533.
  • Moonga I, Niccolini F, Wilson H, et al. Hypertension is associated with worse cognitive function and hippocampal hypometabolism in Alzheimer’s disease. Eur J Neurol. 2017;24:1173–1182.
  • de Oliveira FF, Chen ES, Smith MC, et al. Associations of blood pressure with functional and cognitive changes in patients with Alzheimer’s disease. Dement Geriatr Cogn Disord. 2016;41:314–323.
  • Gabin JM, Tambs K, Saltvedt I, et al. Association between blood pressure and Alzheimer disease measured up to 27 years prior to diagnosis: the HUNT Study. Alzheimers Res Ther. 2017;9:37.
  • Pires PW, Dams Ramos CM, Matin N, et al. The effects of hypertension on the cerebral circulation. Am J Physiol Heart Circ Physiol. 2013;304:H1598–1614.
  • Dinsdale HB, Robertson DM, Haas RA. Cerebral blood flow in acute hypertension. Arch Neurol. 1974;31:80–87.
  • Feldstein CA. Association between chronic blood pressure changes and development of Alzheimer’s disease. J Alzheimers Dis. 2012;32:753–763.
  • Iadecola C, Yaffe K, Biller J, et al. Impact of hypertension on cognitive function: a scientific statement from the American heart association. Hypertension. 2016;68:e67–e94.
  • Takayanagi T, Kawai T, Forrester SJ, et al. Role of epidermal growth factor receptor and endoplasmic reticulum stress in vascular remodeling induced by angiotensin II. Hypertension. 2015;65:1349–1355.
  • Chan S-L, Umesalma S, Baumbach GL. Epidermal growth factor receptor is critical for angiotensin II-mediated hypertrophy in cerebral arterioles. Hypertension. 2015;65:806–812.
  • Faraco G, Park L, Zhou P, et al. Hypertension enhances Aβ-induced neurovascular dysfunction, promotes β-secretase activity, and leads to amyloidogenic processing of APP. J Cereb Blood Flow Metab. 2016;36:241–252.
  • Tian M, Zhu D, Xie W, et al. Central angiotensin II-induced Alzheimer-like tau phosphorylation in normal rat brains. FEBS Lett. 2012;586:3737–3745.
  • Wiesmann M, Capone C, Zerbi V, et al. Hypertension impairs cerebral blood flow in a mouse model for Alzheimer’s disease. Curr Alzheimer Res. 2015;12:914–922.
  • Cifuentes D, Poittevin M, Dere E, et al. Hypertension accelerates the progression of Alzheimer-like pathology in a mouse model of the disease. Hypertension. 2015;65:218–224.
  • Wiesmann M, Roelofs M, van der Lugt R, et al. Angiotensin II, hypertension and angiotensin II receptor antagonism: Roles in the behavioural and brain pathology of a mouse model of Alzheimer’s disease. J Cereb Blood Flow Metab. 2017;37:2396–2413.
  • Torika N, Asraf K, Apte RN, et al. Candesartan ameliorates brain inflammation associated with Alzheimer’s disease. CNS Neurosci Ther. 2018;24:231–242.
  • Ongali B, Nicolakakis N, Tong X-K, et al. Angiotensin II type 1 receptor blocker losartan prevents and rescues cerebrovascular, neuropathological and cognitive deficits in an Alzheimer’s disease model. Neurobiol Dis. 2014;68:126–136.
  • Papadopoulos P, Tong X-K, Imboden H, et al. Losartan improves cerebrovascular function in a mouse model of Alzheimer’s disease with combined overproduction of amyloid-β and transforming growth factor-β1. J Cereb Blood Flow Metab. 2017;37:1959–1970.
  • Harrison DG, Guzik TJ. Macrophages come to mind as keys to cognitive decline. J Clin Invest. 2016;126:4393–4395.
  • Faraco G, Sugiyama Y, Lane D, et al. Perivascular macrophages mediate the neurovascular and cognitive dysfunction associated with hypertension. J Clin Invest. 2016;126:4674–4689.
  • Laibaik P, Ken U, Lidia G-B, et al. Brain perivascular macrophages initiate the neurovascular dysfunction of Alzheimer Aβ peptides. Circ Res. 2017;121:258–269.
  • Foster-Dingley JC, van der Grond J, Moonen JEF, et al. Lower blood pressure is associated with smaller subcortical brain volumes in older persons. Am J Hypertens. 2015;28:1127–1133.
  • Mossello E, Pieraccioli M, Nesti N, et al. Effects of low blood pressure in cognitively impaired elderly patients treated with antihypertensive drugs. JAMA Intern Med. 2015;175:578–585.
  • Liu X, Wang Z, Xia Y, et al. Losartan-induced hypotension leads to tau hyperphosphorylation and memory deficit. J Alzheimers Dis. 2014;40:419–427.
  • de Bruijn RFAG, Ikram MA. Cardiovascular risk factors and future risk of Alzheimer’s disease. BMC Med. 2014;12:130.
  • Wolters FJ, Segufa RA, Darweesh SKL, et al. Coronary heart disease, heart failure, and the risk of dementia: A systematic review and meta-analysis. Alzheimers Dement. 2018;14:1493–1504.
  • Bleckwenn M, Kleineidam L, Wagner M, et al. Impact of coronary heart disease on cognitive decline in Alzheimer’s disease: a prospective longitudinal cohort study in primary care. Br J Gen Pract. 2017;67:e111–e117.
  • Sayols-Baixeras S, Lluís-Ganella C, Lucas G, et al. Pathogenesis of coronary artery disease: focus on genetic risk factors and identification of genetic variants. Appl Clin Genet. 2014;7:15–32.
  • Lathe R, Sapronova A, Kotelevtsev Y. Atherosclerosis and Alzheimer–diseases with a common cause? Inflammation, oxysterols, vasculature. BMC Geriatr. 2014;14:36.
  • Yarchoan M, Xie SX, Kling MA, et al. Cerebrovascular atherosclerosis correlates with Alzheimer pathology in neurodegenerative dementias. Brain. 2012;135:3749–3756.
  • Schultz BG, Patten DK, Berlau DJ. The role of statins in both cognitive impairment and protection against dementia: a tale of two mechanisms. Transl Neurodegener. 2018;7:5.
  • Chu C-S, Tseng P-T, Stubbs B, et al. Use of statins and the risk of dementia and mild cognitive impairment: A systematic review and meta-analysis. Sci Rep. 2018;8:5804.
  • Vuorinen M, Damangir S, Niskanen E, et al. Coronary heart disease and cortical thickness, gray matter and white matter lesion volumes on MRI. PLoS ONE. 2014;9:e109250.
  • Kuźma E, Lourida I, Moore SF, et al. Stroke and dementia risk: A systematic review and meta-analysis. Alzheimers Dement. 2018;14:1416–1426.
  • Zhou J, Yu J-T, Wang H-F, et al. Association between stroke and Alzheimer’s disease: systematic review and meta-analysis. J Alzheimers Dis. 2015;43:479–489.
  • Vijayan M, Reddy PH. Stroke, vascular dementia, and Alzheimer’s disease: molecular links. J Alzheimers Dis. 2016;54:427–443.
  • Honig LS, Tang M-X, Albert S, et al. Stroke and the risk of Alzheimer disease. Arch Neurol. 2003;60:1707–1712.
  • Sherzai D, Sherzai A, Lui K, et al. The association between diabetes and dementia among elderly individuals: a nationwide inpatient sample analysis. J Geriatr Psychiatry Neurol. 2016;29:120–125.
  • Xu WL, von Strauss E, Qiu CX, et al. Uncontrolled diabetes increases the risk of Alzheimer’s disease: a population-based cohort study. Diabetologia. 2009;52:1031–1039.
  • Qiu WQ, Folstein MF. Insulin, insulin-degrading enzyme and amyloid-beta peptide in Alzheimer’s disease: review and hypothesis. Neurobiol Aging. 2006;27:190–198.
  • Akomolafe A, Beiser A, Meigs JB, et al. Diabetes mellitus and risk of developing Alzheimer disease: results from the Framingham Study. Arch Neurol. 2006;63:1551–1555.
  • Dos Matioli MNPS, Suemoto CK, Rodriguez RD, et al. Diabetes is not associated with Alzheimer’s disease neuropathology. J Alzheimers Dis. 2017;60:1035–1043.
  • Mayeda ER, Haan MN, Kanaya AM, et al. Type 2 diabetes and 10-year risk of dementia and cognitive impairment among older Mexican Americans. Diabetes Care. 2013;36:2600–2606.
  • Irie F, Fitzpatrick AL, Lopez OL, et al. Enhanced risk for Alzheimer disease in persons with type 2 diabetes and APOE epsilon4: the cardiovascular health study cognition study. Arch Neurol. 2008;65:89–93.
  • Gustafson DR, Luchsinger JA. High adiposity: risk factor for dementia and Alzheimer’s disease? Alzheimer’s Res Ther. 2013;5:57.
  • Mazon JN, de Mello AH, Ferreira GK, et al. The impact of obesity on neurodegenerative diseases. Life Sci. 2017;182:22–28.
  • Haan MN. Therapy Insight: type 2 diabetes mellitus and the risk of late-onset Alzheimer’s disease. Nat Clin Pract Neurol. 2006;2:159–166.
  • Cui MY, Lin Y, Sheng JY, et al. Exercise intervention associated with cognitive improvement in Alzheimer’s disease. Neural Plast. 2018;2018:9234105.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.