385
Views
5
CrossRef citations to date
0
Altmetric
Clinical Focus: Neurological & Psychiatric Disorders - Original Research

Multiple brain networks support processing speed abilities of patients with multiple sclerosis

, , , , &
Pages 523-532 | Received 14 Jun 2019, Accepted 01 Sep 2019, Published online: 16 Sep 2019

References

  • Campbell J, Rashid W, Cercignani M, et al. Cognitive impairment among patients with multiple sclerosis: associations with employment and quality of life. Postgrad Med J. 2017 Mar;93(1097):143–147.
  • Hämäläinen P, Rosti-Otajärvi E. Cognitive impairment in MS: rehabilitation approaches. Acta Neurol Scand. 2016 Sep;134(Suppl 200):8–13.
  • DeLuca J, Chelune GJ, Tulsky DS, et al. Is speed of processing or working memory the primary information processing deficit in multiple sclerosis? J Clin Exp Neuropsychol. 2004 Jun;26(4):550–562.
  • Leavitt VM, Tosto G, Riley CS. Cognitive phenotypes in multiple sclerosis. J Neurol. 2018 Mar;265(3):562–566.
  • Klaver R, De Vries HE, Schenk GJ, et al. Grey matter damage in multiple sclerosis: A pathology perspective. Prion. 2013 Jan-Feb;7(1):66–75.
  • Calabrese M, Rinaldi F, Grossi P, et al. Cortical pathology and cognitive impairment in multiple sclerosis. Expert Rev Neurother. 2011 Mar;11(3):425–432.
  • Rao SM, Martin AL, Huelin R, et al. Correlations between MRI and information processing speed in MS: A meta-analysis. Mult Scler Int. 2014;2014:975803. doi:10.1155/2014/975803.
  • Calabrese P, Penner IK. Cognitive dysfunctions in multiple sclerosis–a “multiple disconnection syndrome”? J Neurol. 2007 May;254(Suppl 2):Ii18–21.
  • Schoonheim MM, Meijer KA, Geurts JJ. Network collapse and cognitive impairment in multiple sclerosis. Front Neurol. 2015;6:82.
  • Raichle ME, MacLeod AM, Snyder AZ, et al. A default mode of brain function. Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):676–682.
  • Eijlers AJ, Meijer KA, Wassenaar TM, et al. Increased default-mode network centrality in cognitively impaired multiple sclerosis patients. Neurology. 2017 Mar 7;88(10):952–960.
  • Rocca MA, Valsasina P, Meani A, et al. Impaired functional integration in multiple sclerosis: A graph theory study. Brain Struct Funct. 2016 Jan;221(1):115–131.
  • Bonavita S, Gallo A, Sacco R, et al. Distributed changes in default-mode resting-state connectivity in multiple sclerosis. Mult Scler. 2011 Apr;17(4):411–422.
  • Manca R, Sharrack B, Paling D, et al. Brain connectivity and cognitive processing speed in multiple sclerosis: A systematic review. J Neurol Sci. 2018 [cited 2018 May 15];388:115–127.
  • Zhou F, Zhuang Y, Gong H, et al. Altered inter-subregion connectivity of the default mode network in relapsing remitting multiple sclerosis: A functional and structural connectivity study. PloS One. 2014;9(7):e101198.
  • Sbardella E, Tona F, Petsas N, et al. Functional connectivity changes and their relationship with clinical disability and white matter integrity in patients with relapsing-remitting multiple sclerosis. Mult Scler. 2015 Nov;21(13):1681–1692.
  • Tona F, Petsas N, Sbardella E, et al. Multiple sclerosis: altered thalamic resting-state functional connectivity and its effect on cognitive function. Radiology. 2014 Jun;271(3):814–821.
  • Zhou F, Gong H, Chen Q, et al. Intrinsic functional plasticity of the thalamocortical system in minimally disabled patients with relapsing-remitting multiple sclerosis. Front Hum Neurosci. 2016;10:2.
  • Pravatá E, Zecca C, Sestieri C, et al. Hyperconnectivity of the dorsolateral prefrontal cortex following mental effort in multiple sclerosis patients with cognitive fatigue. Mult Scler. 2016 Feb 4.
  • Wojtowicz M, Mazerolle EL, Bhan V, et al. Altered functional connectivity and performance variability in relapsing-remitting multiple sclerosis. Mult Scler. 2014 Oct;20(11):1453–1463.
  • Cruz-Gomez ÁJ, Ventura-Campos N, Belenguer A, et al. The link between resting-state functional connectivity and cognition in MS patients. Mult Scler. 2014 Mar;20(3):338–348.
  • Archibald CJ, Fisk JD. Information processing efficiency in patients with multiple sclerosis. J Clin Exp Neuropsychol. 2000 Oct;22(5):686–701.
  • De Sonneville LM, Boringa JB, Reuling IE, et al. Information processing characteristics in subtypes of multiple sclerosis. Neuropsychologia. 2002;40(11):1751–1765.
  • Denney DR, Lynch SG, Parmenter BA, et al. Cognitive impairment in relapsing and primary progressive multiple sclerosis: mostly a matter of speed. J Int Neuropsychol Soc. 2004 Nov;10(7):948–956.
  • Papathanasiou A, Messinis L, Georgiou VL, et al. Cognitive impairment in relapsing remitting and secondary progressive multiple sclerosis patients: efficacy of a computerized cognitive screening battery. ISRN Neurol. 2014;2014:151379.
  • Ruet A, Deloire M, Hamel D, et al. Cognitive impairment, health-related quality of life and vocational status at early stages of multiple sclerosis: A 7-year longitudinal study. J Neurol. 2013 Mar;260(3):776–784.
  • Rocca MA, Valsasina P, Absinta M, et al. Default-mode network dysfunction and cognitive impairment in progressive MS. Neurology. 2010 Apr 20;74(16):1252–1259.
  • Basile B, Castelli M, Monteleone F, et al. Functional connectivity changes within specific networks parallel the clinical evolution of multiple sclerosis. Mult Scler. 2014 Jul;20(8):1050–1057.
  • Seeley WW, Menon V, Schatzberg AF, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007 Feb 28;27(9):2349–2356.
  • Coull JT, Frith CD, Frackowiak RS, et al. A fronto-parietal network for rapid visual information processing: A PET study of sustained attention and working memory. Neuropsychologia. 1996 Nov;34(11):1085–1095.
  • Sridharan D, Levitin DJ, Menon V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12569–12574.
  • Lublin FD, Reingold SC, Cohen JA, et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology. 2014 Jul 15;83(3):278–286.
  • Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975 Nov;12(3):189–198.
  • Basso A, Capitani E, Laiacona M. Raven’s coloured progressive matrices: normative values on 305 adult normal controls. Funct Neurol. 1987 Apr-Jun;2(2):189–194.
  • Armitage SG. An analysis of certain psychological tests used for the evaluation of brain injury. Psychol Monogr. 1946;60:i-48. (Whole No. 277).
  • Caffarra P, Vezzadini G, Dieci F, et al. A short version of the Stroop test: normative data in an Italian population sample [Una versione abbreviata del test di Stroop: dati normativi nella popolazione Italiana]. Nuova Rivista Di Neurologia. 2002;12(4):111–115.
  • Lezak MD. Neuropsychological assessment. 3rd ed. New York: Oxford University Press; 2004.
  • Novelli G, Papagno C, Capitani E. et al. Tre test clinici di memoria verbale a lungo termine: taratura su soggetti normali. [Three clinical tests for the assessment of verbal long-term memory function: norms from 320 normal subjects.]. Archivio di Psicologia, Neurologia e Psichiatria. 1986;47(2):278–296.
  • Giovagnoli AR, Del Pesce M, Mascheroni S, et al. Trail making test: normative values from 287 normal adult controls. Ital J Neurol Sci. 1996 Aug;17(4):305–309.
  • Schmidt P, Gaser C, Arsic M, et al. An automated tool for detection of FLAIR-hyperintense white-matter lesions in multiple sclerosis. NeuroImage. 2011 Feb 15;59(4):3774–3783.
  • Song XW, Dong ZY, Long XY, et al. REST: A toolkit for resting-state functional magnetic resonance imaging data processing. PloS One. 2011;6(9):e25031.
  • Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci. 2007 Sep;8(9):700–711.
  • Calhoun VD, Adali T, Pearlson GD, et al. A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp. 2001 Nov;14(3):140–151.
  • Wang Y, Li TQ. Dimensionality of ICA in resting-state fMRI investigated by feature optimized classification of independent components with SVM. Front Hum Neurosci. 2015;9:259.
  • Bodling AM, Denney DR, Lynch SG. Cognitive aging in patients with multiple sclerosis: A cross-sectional analysis of speeded processing. Arch Clin Neuropsychol. 2009 Dec;24(8):761–767.
  • Stern Y. Cognitive reserve. Neuropsychologia. 2009 Aug;47(10):2015–2028.
  • Sumowski JF, Leavitt VM. Cognitive reserve in multiple sclerosis. Mult Scler. 2013 Aug;19(9):1122–1127.
  • Leech R, Kamourieh S, Beckmann CF, et al. Fractionating the default mode network: distinct contributions of the ventral and dorsal posterior cingulate cortex to cognitive control. J Neurosci. 2011 Mar 2;31(9):3217–3224.
  • Hagoort P. On broca, brain, and binding: A new framework. Trends Cogn Sci. 2005. 9. Sep(9):416–423.
  • Sowman PF, Crain S, Harrison E, et al. Reduced activation of left orbitofrontal cortex precedes blocked vocalization: A magnetoencephalographic study. J Fluency Disord. 2012 Dec;37(4):359–365.
  • Jefferies E. The neural basis of semantic cognition: converging evidence from neuropsychology, neuroimaging and TMS. Cortex. 2013 [cited 2013 March 01];49(3):611–625.
  • Manca R, Stabile MR, Bevilacqua F, et al. Cognitive speed and white matter integrity in secondary progressive multiple sclerosis. Mult Scler Relat Disord. 2019;30:198–207.
  • Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 2002 Mar 3;(3):201–215.
  • Sestieri C, Corbetta M, Spadone S, et al. Domain-general signals in the cingulo-opercular network for visuospatial attention and episodic memory. J Cogn Neurosci. 2014 Mar;26(3):551–568.
  • Vallesi A. Monitoring mechanisms in visual search: an fMRI study. Brain Res. 2014 Sep;4(1579):65–73.
  • Uddin LQ, Kelly AM, Biswal BB, et al. Functional connectivity of default mode network components: correlation, anticorrelation, and causality. Hum Brain Mapp. 2009 Feb;30(2):625–637.
  • Bonnelle V, Ham TE, Leech R, et al. Salience network integrity predicts default mode network function after traumatic brain injury. Proc Natl Acad Sci U S A. 2012 Mar 20;109(12):4690–4695.
  • Gurd JM, Amunts K, Weiss PH, et al. Posterior parietal cortex is implicated in continuous switching between verbal fluency tasks: an fMRI study with clinical implications. Brain. 2002 May;125(Pt 5):1024–1038.
  • Schlosser R, Hutchinson M, Joseffer S, et al. Functional magnetic resonance imaging of human brain activity in a verbal fluency task. J Neurol Neurosurg Psychiatry. 1998 Apr;64(4):492–498.
  • Janssen AL, Boster A, Patterson BA, et al. Resting-state functional connectivity in multiple sclerosis: an examination of group differences and individual differences. Neuropsychologia. 2013 Nov;51(13):2918–2929.
  • Gamboa OL, Tagliazucchi E, von Wegner F, et al. Working memory performance of early MS patients correlates inversely with modularity increases in resting state functional connectivity networks. NeuroImage. 2014 Jul;94(94):385–395.
  • van Geest Q, Douw L, van ‘t Klooster S, et al. Information processing speed in multiple sclerosis: relevance of default mode network dynamics. NeuroImage Clin. 2018 [cited 2018 Jan 01];19:507–515.
  • Preziosa P, Pagani E, Mesaros S, et al. Progression of regional atrophy in the left hemisphere contributes to clinical and cognitive deterioration in multiple sclerosis: A 5-year study. Hum Brain Mapp. 2017 Nov;38(11):5648–5665.
  • Droby A, Yuen KS, Muthuraman M, et al. Changes in brain functional connectivity patterns are driven by an individual lesion in MS: A resting-state fMRI study. Brain Imaging Behav. 2016 Dec;10(4):1117-1126.
  • Faivre A, Robinet E, Guye M, et al. Depletion of brain functional connectivity enhancement leads to disability progression in multiple sclerosis: A longitudinal resting-state fMRI study. Mult Scler. 2016 Nov;22(13):1695–1708.
  • Meijer KA, Eijlers AJC, Douw L, et al. Increased connectivity of hub networks and cognitive impairment in multiple sclerosis. Neurology. 2017 May 30;88(22):2107–2114.
  • Nejad-Davarani SP, Chopp M, Peltier S, et al. Resting state fMRI connectivity analysis as a tool for detection of abnormalities in five different cognitive networks of the brain in multiple sclerosis patients. Clin Case Rep Rev. 2016 Sep;2(9):464–471.
  • Rocca MA, Valsasina P, Leavitt VM, et al. Functional network connectivity abnormalities in multiple sclerosis: correlations with disability and cognitive impairment. Mult Scler. 2018 Apr;24(4):459–471.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.