5,010
Views
66
CrossRef citations to date
0
Altmetric
Clinical Focus: Gastroenterology, Hepatology & Nephrology - Review

Treatment of urinary tract infections in the era of antimicrobial resistance and new antimicrobial agents

, , &
Pages 234-250 | Received 22 Jun 2019, Accepted 10 Oct 2019, Published online: 24 Oct 2019

References

  • Tandogdu Z, Wagenlehner FM. Global epidemiology of urinary tract infections. Curr Opin Infect Dis. 2016;29(1):73–79.
  • Gupta K, Hooton TM, Naber KG, et al. Infectious Diseases Society of America; European Society for Microbiology and Infectious Diseases. International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: A 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin Infect Dis. 2011;52(5):e103–20.
  • Johansen TE, Botto H, Cek M, et al. Critical review of current definitions of urinary tract infections and proposal of an EAU/ESIU classification system. Int J Antimicrob Agents. 2011;38(Suppl.):64–70.
  • Sader HS, Castanheira M, Duncan LR, et al. Antimicrobial susceptibility of enterobacteriaceae and pseudomonas aeruginosa isolates from united states medical centers stratified by infection type: results from the international network for optimal resistance monitoring (INFORM) surveillance program, 2015-2016. Diagn Microbiol Infect Dis. 2018;92(1):69–74.
  • European Association of Urology (EAU). Guidelines on urological infections. 2017. Available from: http://uroweb.org/guideline/urological-infections/.
  • Bader MS, Loeb M, Brooks AA. An update on the management of urinary tract infections in the era of antimicrobial resistance. Postgrad Med. 2017;129(2):242–258.
  • Karlowsky JA, Legace-Wiens P, Adam H, et al. In vitro susceptibility of urinary isolates of escherichia coli to first- and second-line empirically prescribed oral antimicrobial agents: CANWARD surveillance study results for Canadian outpatients from 2007 to 2016. Int J Antimicrob Agents. 2019. pii: S0924-8579(19)30106-2s.
  • Rank EL, Lodise T, Avery L, et al. Antimicrobial susceptibility trends observed in urinary pathogens obtained from New York state. Open Forum Infect Dis. 2018;5(11):1–6.
  • Ny S, Edquist P, Dumpis U, et al. Antimicrobial resistance of Escherichia coli isolates from outpatient urinary tract infections in women in six European countries including Russia. J Glob Antimicrob Resist. 2018;17:25–34.
  • Morrill HJ, Morton JB, Caffrey AR, et al. Antimicrobial Resistance of Escherichia coli Urinary Isolates in the Veterans Affairs Health Care System. Antimicrob Agents Chemother. 2017;61(5):e02236–16.
  • Huttner A, Verhaegh EM, Harbarth S, et al. Nitrofurantoin revisited: a systematic review and meta-analysis of controlled trials. J Antimicrob Chemother. 2015;70(9):2456–2464.
  • Ahmed H, Farewell D, Francis NA, et al. Risk of adverse outcomes following urinary tract infection in older people with renal impairment: retrospective cohort study using linked health record data. PloS Med. 2018;15(9):e1002652.
  • Mezzatesta ML, La Rosa G, Maugeri G, et al. In vitro activity of fosfomycin trometamol and other oral antibiotics against multidrug-resistant uropathogens. Int J Antimicrob Agents. 2017;49(6):763–766.
  • Giancola SE, Mahoney MV, Hogan MD, et al. Assessment of fosfomycin for complicated or multidrug-resistant urinary tract infections: patient characteristics and outcomes. Chemotherapy. 2017;62(2):100–104.
  • Cai T, Cocci A, Verze P, et al. The use of oral fosfomycin-trometamol in patients with catheter-associated urinary tract infections (CAUTI): new indications for an old antibiotic?. J Chemother. 2018;30(5):290–295.
  • Matthews PC, Barrett LK, Warren S, et al. Oral fosfomycin for treatment of urinary tract infection: a retrospective cohort study. BMC Infect Dis. 2016;16(1):556.
  • Quek WM, Teng CB, Tan YZ, et al. Outcomes of Fosfomycin Use in Ceftriaxone-Resistant Enterobacteriaceae Urinary Tract Infection in the Elderly. Int J Antimicrob Agents. 2019;53(2):195–196.
  • Senol T, Tasbakan M, Pullukcu H, et al. Carbapenem versus fosfomycin tromethanol in the treatment of extended-spectrum beta-lactamase-producing Escherichia coli- related complicated lower urinary tract infection. J Chemother. 2010;22:355–357.
  • Peretz A, Naamneh B, Tkhawkho L, et al. High Rates of Fosfomycin Resistance in Gram-Negative Urinary Isolates from Israel. Microb Drug Resist. 2019;25(3):408–412.
  • van Den Bijllaardt W, Schijffelen MJ, Bosboom RW, et al. Susceptibility of ESBL Escherichia coli and Klebsiella pneumoniae to fosfomycin in the Netherlands and comparison of several testing methods including E test, MIC test strip, Vitek2, Phoenix and disc diffusion. J Antimicrob Chemother. 2018;73(9):2380–2387.
  • Wijma RX, Koch BCP, van Gelder T, et al. High interindividual variabilityin urinary fosfomycin concentrations in healthy female volunteers. Clin Microbiol Infect. 2018;24:528–532.
  • Huttner A, Kowalczyk A, Turjeman A, et al. Effect of 5-day nitrofurantoin vs single-dose fosfomycin on clinical resolution of uncomplicated lower urinary tract infection in women: A randomized clinical trial. JAMA. 2018;319(17):1781–1789.
  • Delisle G, Quach C, Domingo MC, et al. Escherichia coli antimicrobial susceptibility profile and cumulative antibiogram to guide empirical treatment of uncomplicated urinary tract infections in women in the province of Québec, 2010-15. J Antimicrob Chemother. 2016;71(12):3562–3567.
  • Crellin E, Mansfield KE, Leyrat C, et al. Trimethoprim use for urinary tract infection and risk of adverse outcomes in older patients: cohort study. BMJ. 2018;360:341.
  • FDA drug safety communication. US Food and Drug Administration. Available from: https://www.fda.gov/downloads/Drugs/DrugSafety/UCM612834.pdf.
  • Kavatha D, Giamarellou H, Alexiou Z, et al. Cefpodoxime-proxetil versus trimethoprim-sulfamethoxazole for short-term therapy of uncomplicated acute cystitis in women. Antimicrob Agents Chemother. 2003;47:897–900.
  • López IA, Montes JC, Álvarez MJ, et al. Cephalothin is not a reliable surrogate marker for oral cephalosporins in susceptibility testing of Enterobacteriaceae causing urinary tract infection. Diagn Microbiol Infect Dis. 2016;86:412–416.
  • Bunnell KL, Wenzler E, Harrington AT, et al. Impact of Clinical and Laboratory Standards Institute breakpoint changes on susceptibility rates of cephalosporins in uncomplicated urinary tract infections caused by Enterobacteriaceae. Diagn Microbiol Infect Dis. 2018;90(4):335–336.
  • Shehab N, Lovegrove MC, Geller AI, et al. US emergency department visits for outpatient adverse drug events, 2013–2014. JAMA. 2016;316:2115–2125.
  • Ahmed H, Farewell D, Francis NA, et al. Choice of empirical antibiotic therapy and adverse outcomes in older adults with suspected urinary tract infection: cohort study. Open Forum Infect Dis. 2019;6:3.
  • Fuchs F, Hamprecht A. Results from a Prospective In Vitro Study on the Mecillinam (Amdinocillin) Susceptibility of Enterobacterales. Antimicrob Agents Chemother. 2019 Mar 27;63(4):e02402–18.
  • Monsen TJ, Holm SE, Ferry BM, et al. Mecillinam resistance and outcome of evmecillinam treatment in uncomplicated lower urinary tract infection in women. APMIS. 2014;122:317–323.
  • Soraas A, Sundsfjord A, Jorgensen SB, et al. High rate of per oral mecillinam treatment failure in community-acquired urinary tract infections caused by ESBL-producing Escherichia coli. PloS One. 2014;9:e85889.
  • Malcolm W, Fletcher E, Kavanagh K, et al. Risk factors for resistance and MDR in community urine isolates: population-level analysis using the NHS Scotland Infection Intelligence Platform. J Antimicrob Chemother. 2018;73(1):223–230.
  • Bouxom H, Fournier D, Bouiller K, et al. Which non-carbapenem antibiotics are active against extended-spectrum β-lactamase-producing Enterobacteriaceae?. Int J Antimicrob Agents. 2018;52(1):100–103.
  • Veve MP, Wagner JL, Kenney RM, et al. Comparison of fosfomycin to ertapenem for outpatient or step-down therapy of extended-spectrum β-lactamase urinary tract infections. Int J Antimicrob Agents. 2016;48(1):56–60.
  • Emeraud C, Escaut L, Boucly A, et al. Aztreonam plus clavulanate, tazobactam, or avibactam for treatment of infections caused by metallo-β-lactamase-producing gram-negative bacteria. Antimicrob Agents Chemother. 2019;63(5):e00010–19.
  • Tamma PD, Conley AT, Cosgrove SE, et al. Antibacterial resistance leadership group. Association of 30-day mortality with oral step-down vs continued intravenous therapy in patients hospitalized with enterobacteriaceae bacteremia. JAMA Intern Med. 2019;179(3):316–323.
  • Wang SS, Ratliff PD, Judd WR. Retrospective review of ceftriaxone versus levofloxacin for treatment of E. coli urinary tract infections. Int J Clin Pharm. 2018;40(1):143–149.
  • Chua KYL, Stewardson AJ. Individual and community predictors of urinary ceftriaxone-resistant Escherichia coli isolates, Victoria, Australia. Antimicrob Resist Infect Control. 2019;8:36.
  • Moustafa F, Nguyen G, Mathevon T, et al. Evaluation of the efficacy and tolerance of a short 7 day third-generation cephalosporin treatment in the management of acute pyelonephritis in young women in the emergency department. J Antimicrob Chemother. 2016;71(6):1660–1664.
  • Lojanapiwat B, Nimitvilai S, Bamroongya M, et al. Oral sitafloxacin vs intravenous ceftriaxone followed by oral cefdinir for acute pyelonephritis and complicated urinary tract infection: a randomized controlled trial. Infect Drug Resist. 2019;12:173–181.
  • National Institute for Health Care and Excellence (NICE). Pyelonephritis (acute): antimicrobial prescribing. Available from: https://www.nice.org.uk/guidance/ng111/chapter/Recommendations#choice-of-antibiotic.
  • Shirley M. Ceftazidime-avibactam: a review in the treatment of serious gram-negative bacterial infections. Drugs. 2018;78(6):675–692.
  • Stone GG, Bradford PA, Yates K, et al. In vitro activity of ceftazidime/avibactam against urinary isolates from patients in a Phase 3 clinical trial programme for the treatment of complicated urinary tract infections. J Antimicrob Chemother. 2017;72(5):1396–1399.
  • Sader HS, Castanheira M, Flamm RK, et al. Antimicrobial activities of ceftazidime-avibactam and comparator agents against gram-negative organisms isolated from patients with urinary tract infections in U.S. medical centers, 2012 to 2014. Antimicrob Agents Chemother. 2016;60(7):4355–4360.
  • Garcia-Castillo M, Garcia-Fernandez S, Gomez-Gil R, et al. Activity of ceftazidime-avibactam against carbapenemase-producing Enterobacteriaceae from urine specimens obtained during the infection-carbapenem resistance evaluation surveillance trial (iCREST) in Spain. Int J Antimicrob Agents. 2018;51(3):511–515.
  • Castanheira M, Mendes RE, Sader HS. Low frequency of ceftazidime-avibactam resistance among enterobacteriaceae isolates carrying blakpc collected in U.S. hospitals from 2012 to 2015. Antimicrob Agents Chemother. 2017;61(3):e02369–16.
  • Mendes RE, Castanheira M, Woosley LN, et al. Characterization of β-lactamase content of ceftazidime-resistant pathogens recovered during the pathogen-directed Phase 3 trial (REPRISE) for ceftazidime-avibactam: correlation of efficacy against β-lactamase producers. Antimicrob Agents Chemother. 2019;63:e02655–18.
  • Wagenlehner FM, Sobel JD, Newell P, et al. Ceftazidime-avibactam versus doripenem for the treatment of complicated urinary tract infections, including acute pyelonephritis: RECAPTURE, a Phase 3 randomized trial program. Clin Infect Dis. 2016;63:754–762.
  • Carmeli Y, Armstrong J, Laud PJ, et al. Ceftazidime-avibactam or best available therapy in patients with ceftazidime-resistant Enterobacteriaceae and Pseudomonas aeruginosa complicated urinary tract infections or complicated intra-abdominal infections (REPRISE): a randomised, pathogen-directed, phase 3 study. Lancet Infect Dis. 2016;16:661–673.
  • Vazquez JA, González Patzán LD, Stricklin D, et al. Efficacy and safety of ceftazidime-avibactam versus imipenem-cilastatin in the treatment of complicated urinary tract infections, including acute pyelonephritis, in hospitalized adults: results of a prospective, investigator-blinded, randomized study. Curr Med Res Opin. 2012;28(12):1921–1931.
  • Sternbach N, Leibovici Weissman Y, Avni T, et al. Efficacy and safety of ceftazidime/avibactam: a systematic review and meta-analysis. J Antimicrob Chemother. 2018;73(8):2021–2029.
  • Mendes RE, Castanheira M, Woosley LN, et al. Molecular β-lactamase characterization of Gram-negative pathogens recovered from patients enrolled in the ceftazidime-avibactam phase 3 trials (RECAPTURE 1 and 2) for complicated urinary tract infections: efficacies analysed against susceptible and resistant subsets. Int J Antimicrob Agents. 2018;52(2):287–292.
  • Shields RK, Nguyen MH, Chen L, et al. Pneumonia and renal replacement therapy are risk factors for ceftazidime-avibactam treatment failures and resistance among patients with carbapenem-resistant enterobacteriaceae infections. Antimicrob Agents Chemother. 2018;62(5):e02497–17.
  • Ceftolozane/Tazobactam (Zerbaxa)–a new intravenous antibiotic. Med Lett Drugs Ther. 2015;57(1463):31–33.
  • Pfaller MA, Bassetti M, Duncan LR, et al. Ceftolozane/tazobactam activity against drug-resistant Enterobacteriaceae and Pseudomonas aeruginosa causing urinary tract and intraabdominal infections in Europe: report from an antimicrobial surveillance programme (2012-15). J Antimicrob Chemother. 2017;72:1386–1395.
  • Wagenlehner FM, Umeh O, Steenbergen J, et al. Ceftolozane-tazobactam compared with levofloxacin in the treatment of complicated urinary-tract infections, including pyelonephritis: a randomised, double-blind, phase 3 trial (ASPECT-cUTI. Lancet. 2015;385:1949–1956.
  • Popejoy MW, Paterson DL, Cloutier D, et al. Efficacy of ceftolozane/tazobactam against urinary tract and intra-abdominal infections caused by ESBL-producing Escherichia coli and Klebsiella pneumoniae: a pooled analysis of Phase 3 clinical trials. J Antimicrob Chemother. 2017;72(1):268–272.
  • SUPERIOR Study Group, García-Fernández S, García-Castillo M, Bou G, et al. Activity of ceftolozane/tazobactam against Pseudomonas aeruginosa and Enterobacterales isolates recovered from intensive care unit patients in Spain: the SUPERIOR multicentre study. Int J Antimicrob Agents 2019;53(5):682–688.
  • Zhanel GG, Golden AR, Zelenitsky S, et al. Cefiderocol: A siderophore cephalosporin with activity against carbapenem-resistant and multidrug-resistant gram-negative bacilli. Drugs. 2019;79(3):271–289.
  • Jacobs MR, Abdelhamed AM, Good CE, et al. ARGONAUT-I: activity of Cefiderocol (S-649266), a Siderophore cephalosporin, against gram-negative bacteria, including carbapenem-resistant nonfermenters and enterobacteriaceae with defined extended-spectrum β-lactamases and carbapenemases. Antimicrob Agents Chemother. 2018;63(1):e01801–18.
  • Hsueh SC, Lee YJ, Huang YT, et al. In vitro activities of cefiderocol, ceftolozane/ tazobactam,ceftazidime/avibactam and other comparative drugs against imipenem-resistant Pseudomonas aeruginosa and Acinetobacter baumannii, and Stenotrophomonas maltophilia, all associated with bloodstream infections in Taiwan. J Antimicrob Chemother. 2019;74(2):380–386.
  • Portsmouth S, van Veenhuyzen D, Echols R, et al. Cefiderocol versus imipenem-cilastatin for the treatment of complicated urinary tract infections caused by Gram-negative uropathogens: a phase 2, randomised, double-blind, non-inferiority trial. Lancet Infect Dis. 2018;18(12):1319–1328.
  • EMERGENCY ID Net Study Group, Talan DA, Takhar SS, Krishnadasan A, et al. Fluoroquinolone-resistant and extended-spectrum β-lactamase-producing escherichia coli infections in patients with pyelonephritis, United States (1). Emerg Infect Dis 2016;22(9):1594–1603.
  • Malaisri C, Phuphuakrat A, Wibulpolprasert A, et al. A randomized controlled trial of sitafloxacin vs. ertapenem as a switch therapy after treatment for acute pyelonephritis caused by extended-spectrum β-lactamase-producing Escherichia coli: A pilot study. J Infect Chemother. 2017;23(8):556–562.
  • Vente A, Bentley C, Lückermann M, et al. Early clinical assessment of the antimicrobial activity of finafloxacin compared to ciprofloxacin in subsets of microbiologically characterized isolates. Antimicrob Agents Chemother. 2018;62(4):e02325–17.
  • Dalhoff A, Schubert S, Vente A. Pharmacodynamics of finafloxacin, ciprofloxacin, and levofloxacin in serum and urine against TEM- and SHV-type extended-spectrum-β-lactamase-producing enterobacteriaceae isolates from patients with urinary tract infections. Antimicrob Agents Chemother. 2017;61(5):e02446–16.
  • Wagenlehner F, Nowicki M, Bentley C, et al. Explorative randomized phase ii clinical study of the efficacy and safety of finafloxacin versus ciprofloxacin for treatment of complicated urinary tract infections. Antimicrob Agents Chemother. 2018;62(4):e02317.
  • Rattanaumpawan P, Werarak P, Jitmuang A, et al. Efficacy and safety of de-escalation therapy to ertapenem for treatment of infections caused by extended-spectrum-β-lactamase-producing Enterobacteriaceae: an open-label randomized controlled trial. BMC Infect Dis. 2017;17(1):183.
  • Ramasubramanian V, Murlidharan P, Nambi S, et al. Efficacy and cost comparison of ertapenem as outpatient parenteral antimicrobial therapy in acute pyelonephritis due to extended- spectrum beta-lactamase-producing Enterobacteriaceae. Indian J Nephrol. 2018;28:.351–357.
  • Lob SH, Hackel MA, Hoban DJ, et al. Activity of Ertapenem against Enterobacteriaceae in seven global regions-SMART 2012-2016. Eur J Clin Microbiol Infect Dis. 2018;37(8):1481–1489.
  • Rad MA, Zhong LH, Llorin RM, et al. Ertapenem in outpatient parenteral antimicrobial therapy for complicated urinary tract infections. J Chemother. 2017;29(1):25–29.
  • Tamma PD, Han JH, Rock C, et al. Carbapenem therapy is associated with improved survival compared with piperacillin-tazobactam for patients with extended-spectrum beta-lactamase bacteremia. Clin Infect Dis. 2015;60:1319–1325.
  • Rodriguez-Bano J, Navarro MD, Retamar P, et al. beta-Lactam/beta- lactam inhibitor combinations for the treatment of bacteremia due to extended-spectrum beta-lactamase-producing Escherichia coli: a post hoc analysis of prospective cohorts. Clin Infect Dis. 2012;54:167–174.
  • Ng TM, Khong WX, Harris PN, et al. Empiric piperacillin-tazobactam versus carbapenems in the treatment of bacteraemia due to extended-spectrum beta-lactamase-producing Enterobacteriaceae. PLoS One. 2016;11:e0153696.
  • Yoon YK, Kim JH, Sohn JW, et al. Role of piperacillin/tazobactam as a carbapenem-sparing antibiotic for treatment of acute pyelonephritis due to extended-spectrum beta-lactamase-producing Escherichia coli. Int J Antimicrob Agents. 2017;49:410–415.
  • Park SH, Choi SM, Chang YK, et al. The efficacy of non-carbapenem antibiotics for the treatment of community-onset acute pyelonephritis due to extended-spectrum beta-lactamase-producing Escherichia coli. J Antimicrob Chemother. 2014;69:2848–2856.
  • Sfeir M, Askin G, Christos P. Beta-lactam/beta-lactamase inhibitors versus carbapenem for bloodstream infections due to extended spectrum beta- lactamase producing Enterobacteriaceae: systematic review and meta-analysis. Int J Antimicrob Agents. 2018;52(5):554–570.
  • Son SK, Lee NR, Ko J-H, et al. Clinical effectiveness of carbapenems versus alternative antibiotics for treating ESBL-producing Enterobacteriaceae bacteraemia: a systematic review and meta-analysis. J Antimicrob Chemother. 2018;73:2631–2642.
  • Seo YB, Lee J, Kim YK, et al. Randomized controlled trial of piperacillin-tazobactam, cefepime and ertapenem for the treatment of urinary tract infection caused by extended-spectrum beta-lactamase-producing Escherichia coli. BMC Infect Dis. 2017;17(1):404.
  • Harris PNA, Tambyah PA, Lye DC, et al. MERINO trial investigators and the Australasian society for infectious disease clinical research network (ASID-CRN) . effect of piperacillin-tazobactam vs meropenem on 30-day mortality for patients with e coli or klebsiella pneumoniae bloodstream infection and ceftriaxone resistance: a randomized clinical trial. JAMA. 2018;320(10):984–994.
  • Falagas ME, Tansarli GS, Ikawa K, et al. Clinical outcomes with extended or continuous versus short-term intravenous infusion of carbapenems and piperacillin/tazobactam: a systematic review and meta-analysis. Clin Infect Dis. 2013;56:272–282.
  • Guet-Revillet H, Tomini E, Emirian A, et al. Piperacillin/tazobactam as an alternative antibiotic therapy to carbapenems in the treatment of urinary tract infections due to extended-spectrum β-lactamase-producing Enterobacteriaceae: an in silico pharmacokinetic study. Int J Antimicrob Agents. 2017;49(1):62–66.
  • Kim SA, Altshuler J, Paris D, et al. Cefepime versus carbapenems for the treatment of urinary tract infections caused by extended-spectrum β-lactamase-producing enterobacteriaceae. Int J Antimicrob Agents. 2018;51(1):155–158.
  • Lee NY, Lee CC, Huang WH, et al. Cefepime therapy for monomicrobial bacteremia caused by cefepime-susceptible extended-spectrum β-lactamase-producing Enterobacteriaceae: MIC matters. Clin Infect Dis. 2013;56:488–495.
  • Wang R, Cosgrove SE, Tschudin-Sutter S, et al. Cefepime therapy for cefepime-susceptible extended-spectrum β-lactamase– producing Enterobacteriaceae bacteremia. Open Forum Infect Dis. 2016;17:404.
  • Chopra T, Marchaim D, Veltman J, et al. Impact of cefepime therapy on mortality among patients with bloodstream infections caused by extended-spectrum β-lactamase-producing Klebsiella pneumoniae and Escherichia coli. Antimicrob Agents Chemother. 2012;56:3936–3942.
  • Hackel MA, Lomovskaya O, Dudley MN, et al. Activity of meropenem-vaborbactam against clinical isolates of KPC-positive Enterobacteriaceae. Antimicrob Agents Chemother. 2017;21(62):e01904–17.
  • Meropenem/vaborbactam (Vabomere) for complicated urinary tract infection. Med Lett Drugs Ther. 2018;60(1549):103–105.
  • Kaye KS, Bhowmick T, Metallidis S, et al. Effect of meropenem- vaborbactam vs piperacillin-tazobactam on clinical cure or improvement and microbial eradication in complicated urinary tract infection: the TANGO I randomized clinical trial. JAMA. 2018;319(8):788–799.
  • Wunderink RG, Giamarellos-Bourboulis EJ, Rahav G, et al. Effect and safety of meropenem-vaborbactam versus best-available therapy in patients with carbapenem-resistant enterobacteriaceae infections: the TANGO II randomized clinical trial. Infect Dis Ther. 2018;7(4):439–455.
  • Lomovskaya O, Castanheira M, Vazquez J, et al. Assessment of MIC increases with meropenem-vaborbactam and ceftazidime-avibactam in Tango II (a phase 3 study of the treatment of CRE infections. San Diego, CA: Infectious diseases week, Infectious Disease Society of America; 2017.
  • Sun D, Rubio-Aparicio D, Nelson K, et al. Meropenem-vaborbactam resistance selection, resistance prevention, and molecular mechanisms in mutants of KPC-producing Klebsiella pneumoniae. Antimicrob Agents Chemother. 2017;61(12):e01694–17.
  • Karlowsky JA, Lob SH, Kazmierczak KM, et al. In vitro activity of imipenem/relebactam against Gram-negative ESKAPE pathogens isolated in 17 European countries: 2015 SMART surveillance programme. J Antimicrob Chemother. 2018;73(7):1872–1879.
  • Sims M, Mariyanovski V, McLeroth P, et al. Prospective, randomized, double-blind, Phase 2 dose-ranging study comparing efficacy and safety of imipenem/cilastatin plus relebactam with imipenem/cilastatin alone in patients with complicated urinary tract infections. J Antimicrob Chemother. 2017;72(9):2616–2626.
  • Karlowsky JA, Adam HJ, Baxter MR, et al. In vitro activity of sulopenem, an oral penem, against urinary isolates of escherichia coli. Antimicrob Agents Chemother. 2018 Dec 21;63(1):e01832–18.
  • Goodlet KJ, Benhalima FZ, Nailor MD. A systematic review of single-dose aminoglycoside therapy for urinary tract infection: is it time to resurrect an old strategy? Antimicrob Agents Chemother. 2018;63(1):e02165–18.
  • Castanheira M, Deshpande LM, Woosley LN, et al. Activity of plazomicin compared with other aminoglycosides against isolates from European and adjacent countries, including Enterobacteriaceae molecularly characterized for aminoglycoside-modifying enzymes and other resistance mechanisms. J Antimicrob Chemother. 2018;73(12):3346–3354.
  • Castanheira M, Davis AP, Serio AW, et al. In vitro activity of Plazomicin against Enterobacteriaceae isolates carrying genes encoding aminoglycoside-modifying enzymes most common in US Census divisions. Diagn Microbiol Infect Dis. 2019;94(1):73–77.
  • Walkty A, Karlowsky JA, Baxter MR, et al. In vitro activity of plazomicin against gram-negative and gram-positive bacterial pathogens isolated from patients in Canadian hospitals from 2013 to 2017 as part of the CANWARD surveillance study. Antimicrob Agents Chemother. 2018 Dec 21;63(1):e02068–18.
  • Plazomicin (Zemdri) - a new aminoglycoside antibiotic. Med Lett Drugs Ther. 2018;60(1559):180–182.
  • Connolly LE, Riddle V, Cebrik D, et al. A multicenter, randomized, double-blind, phase 2 study of the efficacy and safety of plazomicin compared with levofloxacin in the treatment of complicated urinary tract infection and acute pyelonephritis. Antimicrob Agents Chemother. 2018;62(4):e01989–17.
  • Wagenlehner FME, Cloutier DJ, Komirenko AS, et al. EPIC study group. once-daily plazomicin for complicated urinary tract infections. N Engl J Med. 2019;380(8):729–740.
  • Burgos RM, Rodvold KA. ZTI-01 (fosfomycin for injection) in the treatment of hospitalized patients with complicated urinary tract infections. Future Microbiol. 2019;14:461–475.
  • Kaye KS, Rice LB, Dane A, et al. Fosfomycin for injection (ZTI-01) vs piperacillin-tazobactam (PIP-TAZ) for the treatment of complicated urinary tract infection (cUTI) including acute pyelonephritis (AP): ZEUS, A phase 2/3 randomized trial. Clin Infect Dis. 2019. [cited 6 Mar 2019].
  • Dimopoulos G, Koulenti D, Parker SL, et al. Intravenous fosfomycin for the treatment of multidrug-resistant pathogens: what is the evidence on dosing regimens? Expert Rev Anti Infect Ther. 2019;17(3):201–210.
  • Aghamali M, Sedighi M, Zahedi Bialvaei A, et al. Fosfomycin: mechanisms and the increasing prevalence of resistance. J Med Microbiol. 2019;68(1):11–25.
  • Albiero J, Mazucheli J, Barros JPDR, et al. Pharmacodynamic attainment of the synergism of meropenem and fosfomycin combination against Pseudomonas aeruginosa producing metallo-β-lactamase. Antimicrob Agents Chemother. 2019;63:e00126–19.
  • Florent A, Chichmanian RM, Cua E, et al. Adverse events associated with intravenous fosfomycin. Int J Antimicrob Agents. 2011;37:82–83.
  • Zhanel GG, Baxter MR, Adam HJ, et al. In vitro activity of eravacycline against 2213 Gram-negative and 2424 Gram-positive bacterial pathogens isolated in Canadian hospital laboratories: CANWARD surveillance study 2014-2015. Diagn Microbiol Infect Dis. 2018;91(1):55–62.
  • Tetraphase announces top-line results from IGNITE3 phase 3 clinical trial of eravacycline in complicated urinary tract infections (cUTI). tetraphase pharmaceuticals. Available from: https://ir.tphase.com/news-releases/news-release-details/tetraphase-announces-top-line-results-ignite3-phase-3-clinical.
  • Overcash JS, Bhiwandi P, Garrity-Ryan L, et al. Pharmacokinetics, safety, and clinical outcomes of omadacycline in women with cystitis: results from a phase 1b study. Antimicrob Agents Chemother. 2019;63(5):e02083–18.
  • Hogan M, Bridgeman MB, Min GH, et al. Effectiveness of empiric aztreonam compared to other beta-lactams for treatment of Pseudomonas aeruginosa infections. Infect Drug Resist. 2018;11:1975–1981.
  • Moya B, Barcelo IM, Cabot G, et al. In vitro and in vivo activities of β-lactams in combination with the novel β-lactam enhancers zidebactam and WCK 5153 against multidrug-resistant metallo-β-lactamase-producing klebsiella pneumoniae. Antimicrob Agents Chemother. 2019;63(5):e00128–19.
  • Mushtaq S, Vickers A, Woodford N, et al. Activity of nacubactam (RG6080/OP0595) combinations against MBL-producing Enterobacteriaceae. J Antimicrob Chemother. 2019;74(4):953–960.
  • Zhang W, Guo Y, Li J, et al. In vitro and in vivo bactericidal activity of ceftazidime-avibactam against Carbapenemase-producing Klebsiella pneumoniae. Antimicrob Resist Infect Control. 2018;7:142.
  • Kazmierczak KM, Bradford PA, Stone GG, et al. In vitro activity of ceftazidime-avibactam and aztreonam-avibactam against OXA-48-carrying enterobacteriaceae isolated as part of the international network for optimal resistance monitoring (INFORM) global surveillance program from 2012 to 2015. Antimicrob Agents Chemother. 2018;62(12):e00592–18.
  • Alexandre K. Re ́veillon-Istin M, Fabre R, et al. Temocillin against Enterobacteriaceae isolates from community-acquired urinary tract infections: low rate of resistance and good accuracy of routine susceptibility testing methods. J Antimicrob Chemother. 2018;73:1848–1853.
  • Balakrishnan I, Awad-El-Kariem FM, Aali A, et al. Temocillin use in England: clinical and microbiological efficacies in infections caused by extended-spectrum and/or derepressed AmpC b-lactamase-producing Enterobacteriaceae. J Antimicrob Chemother. 2011;66:2628–2631.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.