556
Views
8
CrossRef citations to date
0
Altmetric
Clinical Focus: Cardiovascular Disease - Review

Type 2 diabetes mellitus and cardiovascular risk; what the pharmacotherapy can change through the epigenetics

ORCID Icon, &
Pages 109-125 | Received 10 Jul 2019, Accepted 14 Oct 2019, Published online: 29 Oct 2019

References

  • Cho NH, Shaw JE, Karuranga S, et al. IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271–281.
  • Matheus AS, Tannus LR, Cobas RA, et al. Impact of diabetes on cardiovascular disease: an update. Int J Hypertens. 2013;2013:653789.
  • Bulugahapitiya U, Siyambalapitiya S, Sithole J, et al. Is diabetes a coronary risk equivalent? Systematic review and meta-analysis. Diabet Med. 2009;26:142–148.
  • Stratton IM, Adler AI, Neil HA, et al. Association of glycemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): a prospective observational study. BMJ. 2000;321:405–412.
  • Khan SS, Butler J, Gheorghiade M. Management of comorbid diabetes mellitus and worsening heart failure. JAMA. 2014;311:2379–2380.
  • Zhang X, Ho SM. Epigenetics meets endocrinology. J Mol Endocrinol. 2011;46:R11–R32.
  • Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell. 2007;128:635–638.
  • Jablonka E. Epigenetic epidemiology. Int J Epidemiol. 2004;33:929–935.
  • Mobbs CV. Glucose-induced transcriptional hysteresis: role in obesity, metabolic memory, diabetes, and aging. Front Endocrinol (Lausanne). 2018;9:232.
  • Ngondo RP, Carbon P. Transcription factor abundance controlled by an auto-regulatory mechanism involving a transcription start site switch. Nucleic Acids Res. 2014;42:2171–2184.
  • Re RN. A proposed mechanism for the Berecek phenomenon with implications for cardiovascular reprogramming. J Am Soc Hypertens. 2018;12:644–651.
  • Hsu C, Jaquet V, Gencoglu M, et al. Protein dimerization generates bistability in positive feedback loops. Cell Rep. 2016;16:1204–1210.
  • Rosen ED, Kaestner KH, Natarajan R, et al. Epigenetics and epigenomics: implications for diabetes and obesity. Diabetes. 2018;67:1923–1931.
  • Hanly DJ, Esteller M, Berdasco M. Interplay between long non-coding RNAs and epigenetic machinery: emerging targets in cancer? Philos Trans R Soc Lond B Biol Sci. 2018;373:20170074.
  • Ruvkun G. Molecular biology. Glimpses of a tiny RNA world. Science. 2001;294:797–799.
  • Cannell IG, Kong YW, Bushell M. How do microRNAs regulate gene expression? Biochem Soc Trans. 2008;36:1224–1231.
  • Wei JW, Huang K, Yang C, et al. Non-coding RNAs as regulators in epigenetics (Review). Oncol Rep. 2017;37:3–9.
  • Poy MN, Eliasson L, Krutzfeldt J, et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature. 2004;432:226–230.
  • Guay C, Roggli E, Nesca V, et al. Diabetes mellitus, a microRNA-related disease? Transl Res. 2011;157:253–264.
  • Arnes L, Sussel L. Epigenetic modifications and long noncoding RNAs influence pancreas development and function. Trends Genet. 2015;3:290–299.
  • Bettin N, Oss Pegorar C, Cusanelli E. The emerging roles of TERRA in telomere maintenance and genome stability. Cells. 2019;8:246.
  • Morris KV, Chan SW, Jacobsen SE, et al. Small interfering RNA-induced transcriptional gene silencing in human cells. Science. 2004;305:1289–1292.
  • Taft RJ, Pang KC, Mercer TR, et al. Non-coding RNAs: regulators of disease. J Pathol. 2010;220:126–139.
  • Yu CY, Kuo HC. The emerging roles and functions of circular RNAs and their generation. J Biomed Sci. 2019;26:29.
  • Handy DE, Castro R, Loscalzo J. Epigenetic modifications: basic mechanisms and role in cardiovascular disease. Circulation. 2011;123:2145–2156.
  • Illingworth RS, Bird AP. CpG islands-’a rough guide’. FEBS Lett. 2009;583:1713–1720.
  • Okano M, Bell DW, Haber DA, et al. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;29(99):247–257.
  • Ito S, Kuraoka I. Epigenetic modifications in DNA could mimic oxidative DNA damage: a double-edged sword. DNA Repair (Amst). 2015;32:52–57.
  • Sommese L, Zullo A, Mancini FP, et al. Clinical relevance of epigenetics in the onset and management of type 2 diabetes mellitus. Epigenetics. 2017;12:401–415.
  • Tamkun JW, Deuring R, Scott MP, et al. Brahma: a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWI2. Cell. 1992;68:561–572.
  • Denis GV. Bromodomain coactivators in cancer, obesity, type 2 diabetes, and inflammation. Discov Med. 2010;10:489–499.
  • Escalante-Covarrubias Q, Aguilar-Arnal L. Environmental regulation of metabolism through the circadian clock. Curr Opin Toxicol. 2018;8:93–101.
  • Berezin A. Epigenetics in heart failure phenotypes. BBA Clin. 2016;6:31–37.
  • Belden WJ. Chromatin regulation and dynamics. Elsevier Inc; 2017; p. 399–416. DOI:https://doi.org/10.1016/B978-0-12-803395-1.00016-2.
  • Pacheco-Bernal I, Becerril-Pérez F, Aguilar-Arnal L. Circadian rhythms in the three-dimensional genome: implications of chromatin interactions for cyclic transcription. Clin Epigenetics. 2019;11:79.
  • Trott AJ, Menet JS. Regulation of circadian clock transcriptional output by CLOCK:BMAL1. PLoS Genet. 2018;14:e1007156.
  • Azzi A, Evans JA, Leise T, et al. Network dynamics mediate circadian clock plasticity. Neuron. 2017;93:441–450.
  • Oh G, Ebrahimi S, Carlucci M, et al. Cytosine modifications exhibit circadian oscillations that are involved in epigenetic diversity and aging. Nat Commun. 2018;9:644.
  • West AC, Bechtold DA. The cost of circadian desynchrony: evidence, insights and open questions. Bioessays. 2015;37:777–788.
  • Holt RI, Barnett AH, Bailey CJ. Bromocriptine: old drug, new formulation and new indication. Diabetes Obes Metab. 2010;12(12):1048–1057.
  • Mouchiroud L, Houtkooper RH, Moullan N, et al. The NAD(+)/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell. 2013;154:430–441.
  • Naresh NU, Haynes CM. Signaling and regulation of the mitochondrial unfolded protein response. Cold Spring Harb Perspect Biol. 2019;11:pii: a033944.
  • Tian Y, Garcia G, Bian Q, et al. Mitochondrial stress induces chromatin reorganization to promote longevity and UPRmt. Cell. 2016;165:1197–1208.
  • Godfrey KM, Barker DJ. Fetal programming and adult health. Public Health Nutr. 2001;4:611–624.
  • Ravelli GP, Stein ZA, Susser MW. Obesity in young men after famine exposure in utero and early infancy. N Engl J Med. 1976;295:349–353.
  • Gluckman PD, Hanson MA, Buklijas T, et al. Epigenetic mechanisms that underpin metabolic and cardiovascular diseases. Nat Rev Endocrinol. 2009;5:401–408.
  • Reaven GM. Why syndrome X? From harold himsworth to the insulin resistance syndrome. Cell Metab. 2005;1:9–14.
  • Brunton S. Pathophysiology of type 2 diabetes: the evolution of our understanding. J Fam Pract. 2016 Apr;65(4Suppl):pii: supp_az_0416.
  • Kuroda A, Rauch TA, Todorov I, et al. Insulin gene expression is regulated by DNA methylation. PloS One. 2009;4:e6953.
  • Yang BT, Dayeh TA, Kirkpatrick CL, et al. Insulin promoter DNA methylation correlates negatively with insulin gene expression and positively with HbA(1c) levels in human pancreatic islets. Diabetologia. 2011;54:360–367.
  • Nilsson E, Jansson PA, Perfilyev A, et al. Altered DNA methylation and differential expression of genes influencing metabolism and inflammation in adipose tissue from subjects with type 2 diabetes. Diabetes. 2014;63:2962–2976.
  • Ait-Oufella H, Taleb S, Mallat Z, et al. Recent advances on the role of cytokines in atherosclerosis. Arterioscler Thromb Vasc Biol. 2011;31:969–979.
  • Beekman M, Heijmans B, Martin N, et al. Heritabilities of apolipoprotein and lipid levels in three countries. Twin Res. 2002;5:87–97.
  • Sayols-Baixeras S, Irvin MR, Arnett DK, et al. Epigenetics of Lipid Phenotypes. Curr Cardiovasc Risk Rep. 2016;10:31.
  • Lim M, Park L, Shin G, et al. Induction of apoptosis of beta cells of the pancreas by advanced glycation end-products, important mediators of chronic complications of diabetes mellitus. Ann N Y Acad Sci. 2008;1150:311–315.
  • Abraham C, Medzhitov R. Interactions between the host innate immune system and microbes in inflammatory bowel disease. Gastroenterology. 2011;140:1729–1737.
  • Dávila LA, Pirela VB, Díaz W, et al. The microbiome and the epigenetics of diabetes mellitus. In: Waisundara V, editor. Diabetes food plan. Rijeka: IntechOpen; 2018. DOI:https://doi.org/10.5772/intechopen.76201
  • Farrelly LA, Thompson RE, Zhao S, et al. Histone serotonylation is a permissive modification that enhances TFIID binding to H3K4me3. Nature. 2019;567:535–539.
  • Roche E, Assimacopoulos-Jeannet F, Witters LA, et al. Induction by glucose of genes coding for glycolytic enzymes in a pancreatic beta-cell line (INS-1). J Biol Chem. 1997;272:3091–3098.
  • Krysko DV, Agostinis P, Krysko O, et al. Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation. Trends Immunol. 2011;32:157–164.
  • Berezin AE. Endothelial progenitor cells dysfunction and impaired tissue reparation: the missed link in diabetes mellitus development. Diabetes Metab Syndr. 2017;11:215–220.
  • Paneni F, Mocharla P, Akhmedov A, et al. Gene silencing of the mitochondrial adaptor p66(Shc) suppresses vascular hyperglycemic memory in diabetes. Circ Res. 2012;111:278–289.
  • Simmons RA. Role of metabolic programming in the pathogenesis of beta-cell failure in postnatal life. Rev Endocr Metab Disord. 2007;8:95–104.
  • Patti ME, Butte AJ, Crunkhorn S, et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc Natl Acad Sci USA. 2003;100:8466–8471.
  • Ortega FJ, Moreno M, Mercader JM, et al. Inflammation triggers specific microRNA profiles in human adipocytes and macrophages and their supernatants. Clin Epigenetics. 2015;7:49.
  • Lu B, Antoine DJ, Kwan K, et al. JAK/STAT1 signaling promotes HMGB1 hyperacetylation and nuclear translocation. Proc Natl Acad Sci USA. 2014;111:3068–3073.
  • Huebener P, Pradere JP, Hernandez C, et al. The HMGB1/RAGE axis triggers neutrophil-mediated injury amplification following necrosis. J Clin Invest. 2015;125:539–550.
  • Ribel-Madsen R, Fraga MF, Jacobsen S, et al. Genome-wide analysis of DNA methylation differences in muscle and fat from monozygotic twins discordant for type 2 diabetes. PLoS One. 2012;7:e51302.
  • Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303:1532–1535.
  • Martinod K, Wagner DD. Thrombosis: tangled up in NETs. Blood. 2014;123:2768–2776.
  • Carubbi F, Alunno A, Gerli R, et al. Post-translational modifications of proteins: novel insights in the autoimmune response in rheumatoid arthritis. Cells. 2019;8:657.
  • Slack JL, Causey CP, Thompson PR. Protein arginine deiminase 4: a target for epigenetic cancer therapy. Cell Mol Life Sci. 2011;68:709–720.
  • Ma YH, Ma TT, Wang C, et al. High-mobility group box 1 potentiates antineutrophil cytoplasmic antibody-inducing neutrophil extracellular traps formation. Arthritis Res Ther. 2016;18:2.
  • Wang L, Zhou X, Yin Y, et al. Hyperglycemia induces neutrophil extracellular traps formation through an NADPH oxidase-dependent pathway in diabetic retinopathy. Front Immunol. 2019;9:3076.
  • Joshi MB, Baipadithaya G, Balakrishnan A, et al. Elevated homocysteine levels in type 2 diabetes induce constitutive neutrophil extracellular traps. Sci Rep. 2016;6:36362.
  • Brasacchio D, Okabe J, Tikellis C, et al. Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes. 2009;58:1229–1236.
  • Berezin A. Neutrophil extracellular traps: the core player in vascular complications of diabetes mellitus. Diabetes Metab Syndr. 2018:pii: S1871–4021: 30275–3.
  • Dos Santos Nunes MK, Silva AS, de Queiroga Evangelista IW, et al. Hypermethylation in the promoter of the MTHFR gene is associated with diabetic complications and biochemical indicators. Diabetol Metab Syndr. 2017;9:84.
  • Huang T, Ren J, Huang J, et al. Association of homocysteine with type 2 diabetes: a meta-analysis implementing Mendelian randomization approach. BMC Genomics. 2013;14:867.
  • Patterson S, Flatt PR, Brennan L, et al. Detrimental actions of metabolic syndrome risk factor, homocysteine, on pancreatic beta-cell glucose metabolism and insulin secretion. J Endocrinol. 2006;189:301–310.
  • Mishra PK, Tyagi N, Sen U, et al. Synergism in hyperhomocysteinemia and diabetes: role of PPAR gamma and tempol. Cardiovasc Diabetol. 2010;9:49.
  • Castro R, Rivera I, Struys EA, et al. Increased homocysteine and S-adenosylhomocysteine concentrations and DNA hypomethylation in vascular disease. Clin Chem. 2003;49:1292–1296.
  • Suzuki LA, Poot M, Gerrity RG, et al. Diabetes accelerates smooth muscle accumulation in lesions of atherosclerosis: lack of direct growth-promoting effects of high glucose levels. Diabetes. 2001;50:851–860.
  • Zaina S, Heyn H, Carmona FJ, et al. DNA methylation map of human atherosclerosis. Circ Cardiovasc Genet. 2014;7:692–700.
  • Valencia-Morales Model P, Zaina S, Heyn H, et al. The DNA methylation drift of the atherosclerotic aorta increases with lesion progression. BMC Med Genomics. 2015;8:7.
  • Pirola L, Balcerczyk A, Tothill RW, et al. Genome-wide analysis distinguishes hyperglycemia regulated epigenetic signatures of primary vascular cells. Genome Res. 2011;21:1601–1615.
  • Breton CV, Park C, Siegmund K, et al. NOS1 methylation, and carotid artery intima-media thickness in children. Circ Cardiovasc Genet. 2014;7:116–122.
  • Valente AJ, Yoshida T, Murthy SN, et al. Angiotensin II enhances AT1-Nox1 binding and stimulates arterial smooth muscle cell migration and proliferation through AT1, Nox1, and interleukin-18. Am J Physiol Heart Circ Physiol. 2012;303:H282–96.
  • Pons D, de Vries FR, van Den Elsen PJ, et al. Epigenetic histone acetylation modifiers in vascular remodeling: new targets for therapy in cardiovascular disease. Eur Heart J. 2009;30:266–277.
  • Fang YC, Yeh CH. Role of microRNAs in vascular remodeling. Curr Mol Med. 2015;15:684–696.
  • Zampetaki A, Kiechl S, Drozdov I, et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res. 2010;107:810–817.
  • Muller M, Fasching P, Schmid R, et al. Inhibition of paracrine angiotensin-converting enzyme in vivo: effects on interstitial glucose and lactate concentrations in human skeletal muscle. Eur J Clin Invest. 1997;27:825–830.
  • Lupi R, Del Guerra S, Bugliani M, et al. The direct effects of the angiotensin-converting enzyme inhibitors, zofenoprilat and enalaprilat, on isolated human pancreatic islets. Eur J Endocrinol. 2006;154:355–361.
  • Furuhashi M, Ura N, Takizawa H, et al. Blockade of the renin-angiotensin system decreases adipocyte size with improvement in insulin sensitivity. J Hypertens. 2004;22:1977–1982.
  • Frossard M, Joukhadar C, Steffen G, et al. Paracrine effects of angiotensin-converting-enzyme- and angiotensin-II-receptor- inhibition on transcapillary glucose transport in humans. Life Sci. 2000;66:PL147–54.
  • Folli F, Saad MJ, Velloso L, et al. Crosstalk between insulin and angiotensin II signaling systems. Exp Clin Endocrinol Diabetes. 1999;107:133–139.
  • De Mello WC. Chemical communication between heart cells is disrupted by intracellular renin and angiotensin II: implications for heart development and disease. Front Endocrinol (Lausanne). 2015;6:72.
  • Sparks MA, Crowley SD, Gurley SB, et al. Classical renin-angiotensin system in kidney physiology. Compr Physiol. 2014;4:1201–1228.
  • Pentz ES, Lopez ML, Cordaillat M, et al. Identity of the renin cell is mediated by cAMP and chromatin remodeling: an in vitro model for studying cell recruitment and plasticity. Am J Physiol Heart Circ Physiol. 2008;294:H699–707.
  • Mudersbach T, Siuda D, Kohlstedt K, et al. Epigenetic control of the angiotensin-converting enzyme in endothelial cells during inflammation. PLoS One. 2019;14:e0216218. Published. 2019 May 1.
  • Krop M, Lu X, Danser AH, et al. The (pro)renin receptor. A decade of research: what have we learned? Pflugers Arch. 2013;465:87–97.
  • Nguyen G, Delarue F, Burcklé C, et al. Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J Clin Invest. 2002;109:1417–1427.
  • Karnik SS, Unal H, Kemp JR, et al. International union of basic and clinical pharmacology. XCIX. Angiotensin receptors: interpreters of pathophysiological angiotensinergic stimuli [corrected] [published correction appears in pharmacol rev. 2015;67:820]. Pharmacol Rev. 2015;67:754–819.
  • Re RN, Cook JL. Noncanonical intracrine action. J Am Soc Hypertens. 2011;5:435–448.
  • Zhang J, Wang X, Vikash V, et al. ROS and ROS-mediated cellular signaling. Oxid Med Cell Longev. 2016;2016:4350965.
  • Takahashi H, Yoshika M, Komiyama Y, et al. The central mechanism underlying hypertension: a review of the roles of sodium ions, epithelial sodium channels, the renin-angiotensin-aldosterone system, oxidative stress and endogenous digitalis in the brain. Hypertens Res. 2011;34:1147–1160.
  • Takeda Y, Demura M, Wang F, et al. Epigenetic regulation of aldosterone synthase gene by sodium and angiotensin II. J Am Heart Assoc. 2018;7:e008281.
  • Lim HS, MacFadyen RJ, Lip GY. Diabetes mellitus, the renin-angiotensin-aldosterone system, and the heart. Arch Intern Med. 2004;164:1737–1748.
  • DREAM Trial Investigators, Dagenais GR, Gerstein HC, et al. Effects of ramipril and rosiglitazone on cardiovascular and renal outcomes in people with impaired glucose tolerance or impaired fasting glucose: results of the Diabetes REduction assessment with ramipril and rosiglitazone Medication (DREAM) trial. Diabetes Care. 2008;31:1007–1014.
  • McMurray JJ, Holman RR, Haffner SM, et al. Effect of valsartan on the incidence of diabetes and cardiovascular events. N Engl J Med. 2010;362:1477–1490.
  • van der Meer P, Gaggin HK, Dec GW. ACC/AHA versus ESC guidelines on heart failure: JACC guideline comparison. J Am Coll Cardiol. 2019;4(73):2756–2768.
  • Tsujimoto T, Kajio H, Shapiro MF, et al. Risk of all-cause mortality in diabetic patients taking β-blockers. Mayo Clin Proc. 2018;93:409–418.
  • Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356:2457–2471.
  • Home PD, Jones NP, Pocock SJ, et al. Rosiglitazone RECORD study: glucose control outcomes at 18 months. Diabet Med. 2007;24:626–634.
  • Holman RR, Paul SK, Bethel MA, et al. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359:1577–1589.
  • Gerstein HC, Miller ME, Byington RP, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358:2545–2559.
  • Patel A, MacMahon S, Chalmers J, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358:2560–2572.
  • Dormandy JA, Charbonnel B, Eckland DJ, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive study (PROspective pioglitAzone clinical trial in macrovascular events): a randomised controlled trial. Lancet. 2005;366:1279–1289.
  • Kernan WN, Viscoli CM, Furie KL, et al. Pioglitazone after ischemic stroke or transient ischemic attack. N Engl J Med. 2016;374:1321–1331.
  • Scirica BM, Bhatt DL, Braunwald E, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013;369:1317–1326.
  • Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–2128.
  • Neal B, Perkovic V, de Zeeuw D, et al. Rationale, design, and baseline characteristics of the Canagliflozin Cardiovascular Assessment Study (CANVAS)–a randomized placebo-controlled trial. Am Heart J. 2013;166:217–23 e11.
  • Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in Type 2 diabetes. N Engl J Med. 2019;380:347–357.
  • Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in Type 2 diabetes. N Engl J Med. 2016;375:311–322.
  • Marso SP, Holst AG, Semaglutide VT. Cardiovascular outcomes in patients with Type 2 diabetes. N Engl J Med. 2017;376:891–892.
  • Yu X, Mao W, Zhai Y, et al. Anti-tumor activity of metformin: from metabolic and epigenetic perspectives. Oncotarget. 2017;8:5619–5628.
  • Giglio RV, Volti GL, Nikolic D, et al. Liraglutide increases circulating miR-27b, miR-130a and miR-210 inpatients with type 2 diabetes: a 4-month pilot study. Diabetologia. 2016;59:S380.
  • Ghanaat-Pour H, Sjoholm A. Gene expression regulated by pioglitazone and exenatide in normal and diabetic rat islets exposed to lipotoxicity. Diabetes Metab Res Rev. 2009;25:163–184.
  • Du Y, Zheng H, Wang J, et al. Metformin inhibits histone H2B monoubiquitination and downstream gene transcription in human breast cancer cells. Oncol Lett. 2014;8:809–812.
  • Yan L, Zhou J, Gao Y, et al. Regulation of tumor cell migration and invasion by the H19/let-7 axis is antagonized by metformin-induced DNA methylation. Oncogene. 2015;34:3076–3084.
  • Zhong T, Men Y, Lu L, et al. Metformin alters DNA methylation genome-wide via the H19/SAHH axis. Oncogene. 2017;36:2345–2354.
  • Ishikawa K, Tsunekawa S, Ikeniwa M, et al. Long-term pancreatic beta cell exposure to high levels of glucose but not palmitate induces DNA methylation within the insulin gene promoter and represses transcriptional activity. PloS One. 2015;10:e0115350.
  • Elbere I, Silamikelis I, Ustinova M, et al. Significantly altered peripheral DNA methylation profile as a result of the immediate effect of metformin use in healthy individuals. Clin Epigenetics. 2018;10:156.
  • Garcia-Calzon S, Perfilyev A, Mannisto V, et al. Diabetes medication associates with DNA methylation of metformin transporter genes in the human liver. Clin Epigenetics. 2017;9:102.
  • Legchenko E, Chouvarine P, Borchert P, et al. PPARγ agonist pioglitazone reverses pulmonary hypertension and prevents right heart failure via fatty acid oxidation. Sci Transl Med. 2018;438:eaao0303.
  • Aouali N, Palissot V, El-Khoury V, et al. Peroxisome proliferator-activated receptor gamma agonists potentiate the cytotoxic effect of valproic acid in multiple myeloma cells. Br J Haematol. 2009;147:662–671.
  • Aouali N, Broukou A, Bosseler M, et al. Epigenetic activity of peroxisome proliferator-activated receptor gamma agonists increases the anticancer effect of histone deacetylase inhibitors on multiple myeloma cells. PloS One. 2015;10:e0130339.
  • Li YF, Langholz B, Salam MT, et al. Maternal and grandmaternal smoking patterns are associated with early childhood asthma. Chest. 2005;127:1232–1241.
  • Leslie FM. Multigenerational epigenetic effects of nicotine on lung function. BMC Med. 2013;11:27.
  • Pharaon LF, El-Orabi NF, Kunhi M, et al. Rosiglitazone promotes cardiac hypertrophy and alters chromatin remodeling in isolated cardiomyocytes. Toxicol Lett. 2017;280:151–158.
  • Aumueller E, Remely M, Baeck H, et al. Interleukin-6 CpG methylation and body weight correlate differently in type 2 diabetes patients compared to obese and lean controls. J Nutrigenet Nutrigenomics. 2015;8:26–35.
  • Gao M, Deng XL, Liu ZH, et al. Liraglutide protects beta-cell function by reversing histone modification of Pdx-1 proximal promoter in catch-up growth male rats. J Diabetes Complications. 2018;32:985–994.
  • Pinney SE, Jaeckle Santos LJ, Han Y, et al. Exendin-4 increases histone acetylase activity and reverses epigenetic modifications that silence Pdx1 in the intrauterine growth retarded rat. Diabetologia. 2011;54:2606–2614.
  • Yasuda H, Mizukami K, Hayashi M, et al. Exendin-4 promotes extracellular-superoxide dismutase expression in A549 cells through DNA demethylation. J Clin Biochem Nutr. 2016;58:34–39.
  • Yasuda H, Ohashi A, Nishida S, et al. Exendin-4 induces extracellular-superoxide dismutase through histone H3 acetylation in human retinal endothelial cells. J Clin Biochem Nutr. 2016;59:174–181.
  • Cicek FA, Tokcaer-Keskin Z, Ozcinar E, et al. Dipeptidyl peptidase-4 inhibitor sitagliptin protects vascular function in metabolic syndrome: possible role of epigenetic regulation. Mol Biol Rep. 2014;41:4853–4863.
  • Yamaguchi T, Watanabe A, Tanaka M, et al. A dipeptidyl peptidase-4 (DPP-4) inhibitor, linagliptin, attenuates cardiac dysfunction after myocardial infarction independently of DPP-4. J Pharmacol Sci. 2019;139:112–119.
  • Steven S, Oelze M, Hanf A, et al. The SGLT2 inhibitor empagliflozin improves the primary diabetic complications in ZDF rats. Redox Biol. 2017;13:370–385.
  • Mansuri A, Elmaghrabi A, Alhamoud I, et al. Transient enalapril attenuates the reduction in glomerular filtration rate in prenatally programmed rats. Physiol Rep. 2017;5:e13266.
  • De Vries N, Prestes P, Rana I, et al. Epigenetic changes after acute treatment with acute angiotensin-converting enzyme inhibitors (ACEi). J Hypertens. 2016;34:e204–e205.
  • De Vries N, Prestes P, Raipuria M, et al. Angiotensin-converting enzyme inhibitors epigenetically attenuate telomere shortening. J Hypertens. 2018;36:85.
  • Ali MM, Mahmoud AM, Le Master E, et al. Role of matrix metalloproteinases and histone deacetylase in oxidative stress-induced degradation of the endothelial glycocalyx. Am J Physiol Heart Circ Physiol. 2019;316:H647–H663.
  • Masjoan-Juncos JX, Liao T-D, Bordcoch G, et al. Offspring of captopril treated spontaneously hypertensive rats have lower angiotensin II Type 1 receptor expression which is associated with lower blood pressure. Hypertension. 2017;70. Accessed 2019 Jun 13 https://insights.ovid.com/hypertension/hype/2017/09/001/abstract-p231-offspring-captopril-treated/275/00004268
  • Adetoro IA, Lucchesi PA, Cismowski M, et al. The prenatal renin-angiotensin system during a critical period in the development of hypertensive heart disease. Faseb J. 2016;30.
  • Wang T, Lian G, Cai X, et al. Effect of prehypertensive losartan therapy on AT1R and ATRAP methylation of adipose tissue in the later life of high fat fed spontaneously hypertensive rats. Mol Med Rep. 2018;17:1753–1761.
  • Reddy MA, Sumanth P, Lanting L, et al. Losartan reverses permissive epigenetic changes in renal glomeruli of diabetic db/db mice. Kidney Int. 2014;85:362–373.
  • Park HW, Kim Y, Kim KH, et al. Angiotensin II receptor blocker pretreatment of rats undergoing sudden renal ablation. Nephrol Dialysis Transplant. 2012;27:107–114.
  • Jiang X, Zhang F, Ning Q. Losartan reverses the down-expression of long noncoding RNA-NR024118 and Cdkn1c induced by angiotensin II in adult rat cardiac fibroblasts. Pathol Biol. 2015;63:122–125.
  • Wang J, Duan L, Gao Y, et al. Angiotensin II receptor blocker valsartan ameliorates cardiac fibrosis partly by inhibiting miR-21 expression in diabetic nephropathy mice. Mol Cell Endocrinol. 2018;472:149–158.
  • Kadakol A, Malek V, Goru SK, et al. Telmisartan and esculetin combination improve type 2 diabetic cardiomyopathy by reversal of H3, H2A, and H2B histone modifications. Indian J Pharmacol. 2017;49:348–356.
  • Malek V, Gaikwad AB. Telmisartan and thiorphan combination treatment attenuate fibrosis and apoptosis in preventing diabetic cardiomyopathy. Cardiovasc Res. 2019;115:373–384.
  • Pandey A, Goru SK, Kadakol A, et al. H2AK119 monoubiquitination regulates Angiotensin II receptor-mediated macrophage infiltration and renal fibrosis in type 2 diabetic rats. Biochimie. 2016;131:68–76.
  • Pandey A, Gaikwad AB. Compound 21 and Telmisartan combination mitigates type 2 diabetic nephropathy through amelioration of caspase-mediated apoptosis. Biochem Biophys Res Commun. 2017;487:827–833.
  • Yue Z, Yun-Shan Z, Feng-Xia X. miR-205 mediates the inhibition of cervical cancer cell proliferation using olmesartan. J Renin Angiotensin Aldosterone Syst. 2016;17:1470320316663327.
  • Kaneko M, Satomi T, Fujiwara S, et al. AT1 receptor blocker azilsartan medoxomil normalizes plasma miR-146a and miR-342-3p in a murine heart failure model. Biomarkers. 2017;22:253–260.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.