108
Views
1
CrossRef citations to date
0
Altmetric
Hematology

Circulating platelets supply ST6Gal-1 in patients with IgA nephropathy

, , , , &
Pages 161-168 | Received 10 May 2022, Accepted 23 Nov 2022, Published online: 26 Dec 2022

References

  • Rawla P, Limaiem F: IgA nephropathy. 2020
  • Liu Y, Ma X, Lv J, et al. Risk factors for pregnancy outcomes in patients with IgA nephropathy: a matched cohort study. Am J Kidney Dis. 2014;64(5):730–736.
  • KDIGO 2021 clinical practice guideline for the management of glomerular diseases. Kidney Int. 2021;100(4S):S1–S276.
  • Floege J, Rauen T, Tang S. Current treatment of IgA nephropathy. Seminars in Immunopathology. 2021;43(5):717–728.
  • Lin Y, Jia J, Guo Y, et al. Corticosteroid for IgA nephropathy: are they really therapeutic? Am J Nephrol. 2018;47(6):385–394.
  • Lv J, Zhang H, Wong MG, et al. Perkovic V: effect of oral methylprednisolone on clinical outcomes in patients with IgA nephropathy: the TESTING randomized clinical trial. Jama. 2017;318(5):432–442.
  • Irons EE, Lau J. Systemic ST6Gal-1 is a pro-survival factor for murine transitional b cells. Front Immunol. 2018;9:2150.
  • Maslak HS, Kostiuk OV, Minchenko DO, et al. Glycoprotein sialylation and NEU1 and ST6GAL1 expressions in erythremia. Fiziol Zh. 2014;60(5):14–22.
  • Dorsett KA, Marciel MP, Hwang J, et al. Regulation of ST6GAL1 sialyltransferase expression in cancer cells. Glycobiology. 2021;31(5):530–539.
  • Krick S, Helton ES, Easter M, et al. ST6GAL1 and alpha2-6 sialylation regulates IL-6 expression and secretion in chronic obstructive pulmonary disease. Front Immunol. 2021;12:693149.
  • Huang G, Li Z, Li Y, et al. Loss of core fucosylation in both ST6GAL1 and its substrate enhances glycoprotein sialylation in mice. Biochem J. 2020;477(6):1179–1201.
  • Garnham R, Scott E, Livermore KE, et al. ST6GAL1: a key player in cancer. Oncol Lett. 2019;18(2):983–989.
  • Li M, Foo JN, Wang JQ, et al. Liu JJ: identification of new susceptibility loci for IgA nephropathy in Han Chinese. Nat Commun. 2015;6(1):7270.
  • Shi M, Ouyang Y, Yang M, et al. IgA nephropathy susceptibility loci and disease progression. Clin J Am Soc Nephrol. 2018;13(9):1330–1338.
  • Liu Y, Yu H, Wu S, et al. Plasma ST6GAL1 regulates IgG sialylation to control IgA nephropathy progression. Ther Adv Chronic Dis. 2021;12:364097220.
  • Lee-Sundlov MM, Ashline DJ, Hanneman AJ, et al. Circulating blood and platelets supply glycosyltransferases that enable extrinsic extracellular glycosylation. Glycobiology. 2017;27(2):188–198.
  • Condac E, Dale GL, Bender-Neal D, et al. Xylosyltransferase II is a significant contributor of circulating xylosyltransferase levels and platelets constitute an important source of xylosyltransferase in serum. Glycobiology. 2009;19(8):829–833.
  • Wang J, Xie P, Huang JM, et al. The new Asian modified CKD-EPI equation leads to more accurate GFR estimation in Chinese patients with CKD. Int Urol Nephrol. 2016;48(12):2077–2081.
  • Trimarchi H, Barratt J, Cattran DC, et al. Oxford Classification of IgA nephropathy 2016: an update from the IgA nephropathy classification working group. Kidney Int. 2017;91(5):1014–1021.
  • Colley KJ. Golgi localization of glycosyltransferases: more questions than answers. Glycobiology. 1997;7(1):1–13.
  • Sun X, Mahajan D, Chen B, et al. A quantitative study of the Golgi retention of glycosyltransferases. J Cell Sci. 2021;134.
  • Krick S, Helton ES, Easter M, et al. ST6GAL1 and alpha2-6 sialylation regulates IL-6 expression and secretion in chronic obstructive pulmonary disease. FRONT IMMUNOL 2021;12:693149.
  • Myojin Y, Kodama T, Maesaka K, et al. ST6GAL1 is a novel serum biomarker for Lenvatinib-Susceptible FGF19-Driven hepatocellular carcinoma. Clin Cancer Res. 2021;27(4):1150–1161.
  • Wandall HH, Rumjantseva V, Sorensen AL, et al. The origin and function of platelet glycosyltransferases. Blood. 2012;120(3):626–635.
  • Ong YC, Chang H, Yeh TS, et al. Impact of platelet counts, surgical methods, and preoperative platelet transfusion on the outcome of splenectomy for immune thrombocytopenia. Acta Haematol. 2020;143(5):465–471.
  • Culic S, Labar B, Marusic A, et al. Correlations among age, cytokines, lymphocyte subtypes, and platelet counts in autoimmune thrombocytopenic purpura. Pediatr Blood Cancer. 2006;47(S5):671–674.
  • Rachidi S, Li H, Wallace K, et al. Preoperative platelet counts and postoperative outcomes in cancer surgery: a multicenter, retrospective cohort study. Platelets. 2020;31(1):79–87.
  • Tomino Y, Tsushima Y, Ohmuro H, et al. Detection of activated platelets in urinary sediments by immunofluorescence using monoclonal antibody to human platelet GMP-140 in patients with IgA nephropathy. J Clin Lab Anal. 1993;7(6):329–333.
  • Nakamura T, Ebihara I, Nagaoka I, et al. Renal platelet-derived growth factor gene expression in NZB/W F1 mice with lupus and ddY mice with IgA nephropathy. Clin Immunol Immunopathol. 1992;63(2):173–181.
  • Naito T. Study on platelet-derived growth factor (PDGF) and PDGF receptor expression in glomeruli and corticosteroid therapy in IgA nephropathy. Nihon Jinzo Gakkai Shi. 1994;36(10):1113–1122.
  • Custodio-Chable SJ, Lezama RA, Reyes-Maldonado E. Platelet activation as a trigger factor for inflammation and atherosclerosis. Cir Cir. 2020;88(2):233–243.
  • Chang D, Cheng Y, Luo R, et al. The prognostic value of platelet-to-lymphocyte ratio on the long-term renal survival in patients with IgA nephropathy. Int Urol Nephrol. 2021;53(3):523–530.
  • Schiffl H. Schiffl H: platelet-to-lymphocyte ratio and prediction of progressive IgA nephropathy: myth or fact? Int Urol Nephrol. 2021;53(11):2421–2422.
  • Taji Y, Kuwahara T, Shikata S, et al. Meta-analysis of antiplatelet therapy for IgA nephropathy. Clin Exp Nephrol. 2006;10(4):268–273.
  • Liu XJ, Geng YQ, Xin SN, et al. Antithrombotic drug therapy for IgA nephropathy: a meta analysis of randomized controlled trials. Intern Med. 2011;50(21):2503–2510.
  • Liu Y, Wang F, Zhang Y, et al. ST6Gal1 is up-regulated and associated with aberrant IgA1 glycosylation in IgA nephropathy: an integrated analysis of the transcriptome. J Cell Mol Med. 2020;24(18):10493–10500.
  • Lee MM, Nasirikenari M, Manhardt CT, et al. Platelets support extracellular sialylation by supplying the sugar donor substrate. J Biol Chem. 2014;289(13):8742–8748.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.