297
Views
0
CrossRef citations to date
0
Altmetric
Renal

Novel therapeutic approaches in the management of chronic kidney disease: a narrative review

ORCID Icon, ORCID Icon & ORCID Icon
Pages 543-550 | Received 14 Mar 2023, Accepted 27 Jun 2023, Published online: 06 Jul 2023

References

  • McCullough KP, Morgenstern H, Saran R, et al. Projecting ESRD incidence and prevalence in the United States through 2030. J Am Soc Nephrol. 2019 Jan;30(1):127–135.
  • Johansen KL, Chertow GM, Foley RN, et al. US renal data system 2020 annual data report: epidemiology of kidney disease in the United States. Am J Kidney Dis. 2021 Apr;77(4 Suppl 1):A7–A8.
  • Jankowski J, Floege J, Fliser D, et al. Cardiovascular disease in chronic kidney disease: pathophysiological insights and therapeutic options. Circulation. 2021 Mar 16;143(11):1157–1172. doi: 10.1161/CIRCULATIONAHA.120.050686
  • Wright RS, Collins MG, Stoekenbroek RM, et al. Effects of renal impairment on the pharmacokinetics, efficacy, and safety of inclisiran: an analysis of the ORION-7 and ORION-1 studies. Mayo Clin Proc. 2020 Jan;95(1):77–89.
  • Kooman JP, Kotanko P, Schols AM, et al. Chronic kidney disease and premature ageing. Nat Rev Nephrol. 2014 Dec;10(12):732–742.
  • Ebert T, Pawelzik SC, Witasp A, et al. Inflammation and premature ageing in chronic kidney disease. Toxins (Basel). 2020 Apr 4;12(4):227. doi: 10.3390/toxins12040227
  • Whelton PK, Carey RM, Aronow WS, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: executive summary: a report of the American College Of Cardiology/American Heart Association Task Force on clinical practice guidelines. Hypertension. 2018 Jun;71(6):1269–1324.
  • Kalaitzidis RG, Elisaf MS. Treatment of hypertension in chronic kidney disease. Curr Hypertens Rep. 2018 Jun 11;20(8):64. doi: 10.1007/s11906-018-0864-0
  • Sarafidis PA, Li S, Chen SC, et al. Hypertension awareness, treatment, and control in chronic kidney disease. Am j med. 2008 Apr;121(4):332–340.
  • Sarafidis PA, Sharpe CC, Wood E, et al. Prevalence, patterns of treatment, and control of hypertension in predialysis patients with chronic kidney disease. Nephron Clin Pract. 2012;120(3):c147–55. doi: 10.1159/000337571
  • Khosla N, Kalaitzidis R, Bakris GL. The kidney, hypertension, and remaining challenges. Med Clin North Am. 2009 May;93(3):697–715. Table of Contents.
  • Lv J, Ehteshami P, Sarnak MJ, et al. Effects of intensive blood pressure lowering on the progression of chronic kidney disease: a systematic review and meta-analysis. CMAJ. 2013 Aug 6;185(11):949–957. doi: 10.1503/cmaj.121468
  • Huang L, Trieu K, Yoshimura S, et al. Effect of dose and duration of reduction in dietary sodium on blood pressure levels: systematic review and meta-analysis of randomised trials. BMJ. 2020 Feb 24;368:m315. doi: 10.1136/bmj.m315
  • Stevens PE, Levin A, Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group M. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med. 2013 Jun 4; 158(11):825–830. doi: 10.7326/0003-4819-158-11-201306040-00007
  • Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018 [2018 Sep 1];39(33):3021–3104. doi: 10.1093/eurheartj/ehy339
  • Mancia G, Fagard R, Narkiewicz K, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the task force for the management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J. 2013 Jul;34(28):2159–2219.
  • Cheung AK, Chang TI, Cushman WC, et al. KDIGO 2021 clinical practice guideline for the management of blood pressure in chronic kidney disease. Kidney International. 2021 Mar;99(3):S1–S87. doi: 10.1016/j.kint.2020.11.003
  • Taler SJ, Agarwal R, Bakris GL, et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for management of blood pressure in CKD. Am J Kidney Dis. 2013 Aug;62(2):201–213.
  • American Diabetes A 11. Microvascular complications and foot care: standards of medical care in diabetes-2020. Diabetes Care. 2020 Jan;43(Suppl 1):S135–S151.
  • Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J Hypertens. 2018 Oct;36(10):1953–2041.
  • Agarwal R, Sinha AD, Cramer AE, et al. Chlorthalidone for hypertension in advanced chronic kidney disease. N Engl J Med. 2021 Dec 30;385(27):2507–2519. doi: 10.1056/NEJMoa2110730
  • Agarwal R. Spironolactone and chlorthalidone-old drugs, new uses-but approach with caution. Nephrol Dial Transplant. 2022 Feb 25;37(3):407–408. doi: 10.1093/ndt/gfab328
  • Heerspink HJL, Stefansson BV, Correa-Rotter R, et al. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020 Oct 8;383(15):1436–1446. doi: 10.1056/NEJMoa2024816
  • Kruger D, Valentine V. Canagliflozin for the treatment of diabetic kidney disease and implications for clinical practice: a narrative review. Diabetes Ther. 2020 Jun;11(6):1237–1250. doi: 10.1007/s13300-020-00826-w
  • Theofilis P, Sagris M, Oikonomou E, et al. Pleiotropic effects of SGLT2 inhibitors and heart failure outcomes. Diabet Res Clin Pract. 2022 Jun;188:109927.
  • Theofilis P, Antonopoulos AS, Katsimichas T, et al. The impact of SGLT2 inhibition on imaging markers of cardiac function: A systematic review and meta-analysis. Pharmacol Res. 2022 Jun;180:106243.
  • Theofilis P, Sagris M, Oikonomou E, et al. The impact of SGLT2 inhibitors on inflammation: A systematic review and meta-analysis of studies in rodents. Int Immunopharmacol. 2022 Oct;111:109080.
  • Mazidi M, Rezaie P, Gao HK, et al. Effect of sodium-glucose cotransport-2 inhibitors on blood pressure in people with type 2 diabetes mellitus: a systematic review and meta-analysis of 43 randomized control trials with 22 528 patients. J Am Heart Assoc. 2017 May 25;6(6). doi: 10.1161/JAHA.116.004007
  • Thomas MC, Cherney DZI. The actions of SGLT2 inhibitors on metabolism, renal function and blood pressure. Diabetologia. 2018 Oct;61(10):2098–2107. doi: 10.1007/s00125-018-4669-0
  • Theofilis P, Vordoni A, Kalaitzidis RG. Oxidative stress management in cardiorenal diseases: focus on novel antidiabetic agents, finerenone, and melatonin. Life. 2022;12(10):1663. doi: 10.3390/life12101663
  • Theofilis P, GK R. SGLT2 inhibitors and kidney diseases: A clinical perspective. Curr Med Chem. 2022 Dec 27;30(23):2595–2603. doi: 10.2174/0929867330666221227091943
  • Yau K, Dharia A, Alrowiyti I, et al. Prescribing SGLT2 Inhibitors in Patients with CKD: expanding indications and practical considerations. Kidney Int Rep. 2022 Nov;7(11):2546–2547.
  • Jardine M, Zhou Z, Lambers Heerspink HJ, et al. Kidney, cardiovascular, and safety outcomes of canagliflozin according to baseline albuminuria: A CREDENCE secondary analysis. Clin J Am Soc Nephrol. 2021 Mar 8;16(3):384–395. doi: 10.2215/CJN.15260920
  • Stougaard EB, Rossing P, Cherney D, et al. Sodium-glucose cotransporter 2 inhibitors as adjunct therapy for type 1 diabetes and the benefit on cardiovascular and renal disease evaluated by Steno risk engines. J Diabetes Complications. 2022 Aug;36(8):108257.
  • Wheeler DC, Toto RD, Stefansson BV, et al. A pre-specified analysis of the DAPA-CKD trial demonstrates the effects of dapagliflozin on major adverse kidney events in patients with IgA nephropathy. Kidney Int. 2021 Jul;100(1):215–224.
  • Wheeler DC, Jongs N, Stefansson BV, et al. Safety and efficacy of dapagliflozin in patients with focal segmental glomerulosclerosis: a prespecified analysis of the dapagliflozin and prevention of adverse outcomes in chronic kidney disease (DAPA-CKD) trial. Nephrol Dial Transplant. 2022 Aug 22;37(9):1647–1656. doi: 10.1093/ndt/gfab335
  • Alexandrou ME, Papagianni A, Tsapas A, et al. Effects of mineralocorticoid receptor antagonists in proteinuric kidney disease: a systematic review and meta-analysis of randomized controlled trials. J Hypertens. 2019 Dec;37(12):2307–2324.
  • Khosla N, Kalaitzidis R, Bakris GL. Predictors of hyperkalemia risk following hypertension control with aldosterone blockade. Am J Nephrol. 2009;30(5):418–424. doi: 10.1159/000237742
  • Kintscher U, Bakris GL, Kolkhof P. Novel non-steroidal mineralocorticoid receptor antagonists in cardiorenal disease. Br J Pharmacol. 2022 Jul;179(13):3220–3234. doi: 10.1111/bph.15747
  • Agarwal R, Filippatos G, Pitt B, et al. Cardiovascular and kidney outcomes with finerenone in patients with type 2 diabetes and chronic kidney disease: the FIDELITY pooled analysis. Eur Heart J. 2022 Feb 10;43(6):474–484. doi: 10.1093/eurheartj/ehab777
  • Kolkhof P, Joseph A, Kintscher U. Nonsteroidal mineralocorticoid receptor antagonism for cardiovascular and renal disorders - New perspectives for combination therapy. Pharmacol Res. 2021 Oct;172:105859. doi: 10.1016/j.phrs.2021.105859
  • Bakris G, Pergola PE, Delgado B, et al. Effect of KBP-5074 on blood pressure in advanced chronic kidney disease: results of the BLOCK-CKD Study. Hypertension. 2021 Jul;78(1):74–81.
  • Ito S, Itoh H, Rakugi H, et al. Efficacy and safety of esaxerenone (CS-3150) for the treatment of essential hypertension: a phase 2 randomized, placebo-controlled, double-blind study. J Hum Hypertens. 2019 Jul;33(7):542–551.
  • Theofilis P, Vordoni A, Kalaitzidis RG. The role of melatonin in chronic kidney disease and its associated risk factors: a new tool in our arsenal? Am J Nephrol. 2022;53(7):565–574. doi: 10.1159/000525441
  • Satari M, Bahmani F, Reiner Z, et al. Metabolic and anti-inflammatory response to melatonin administration in patients with diabetic nephropathy. Iran J Kidney Dis. 2021 Jan;1(1):22–30.
  • Ostadmohammadi V, Soleimani A, Bahmani F, et al. The effects of melatonin supplementation on parameters of mental health, glycemic control, markers of cardiometabolic risk, and oxidative stress in diabetic hemodialysis patients: a randomized, double-blind, placebo-controlled trial. J Ren Nutr. 2020 May;30(3):242–250.
  • Yang CC, Sung PH, Chen KH, et al. Valsartan- and melatonin-supported adipose-derived mesenchymal stem cells preserve renal function in chronic kidney disease rat through upregulation of prion protein participated in promoting PI3K-Akt-Mtor signaling and cell proliferation. Biomed Pharmacother. 2022 Feb;146:112551.
  • Yea JH, Yoon YM, Lee JH, et al. Exosomes isolated from melatonin-stimulated mesenchymal stem cells improve kidney function by regulating inflammation and fibrosis in a chronic kidney disease mouse model. J Tissue Eng. 2021 Jan;12:20417314211059624.
  • Cao Y, Lu G, Chen X, et al. BAFF is involved in the pathogenesis of IgA nephropathy by activating the TRAF6/NF‑kappaB signaling pathway in glomerular mesangial cells. Mol Med Rep. 2020 Feb;21(2):795–805.
  • Myette JR, Kano T, Suzuki H, et al. A Proliferation Inducing Ligand (APRIL) targeted antibody is a safe and effective treatment of murine IgA nephropathy. Kidney Int. 2019 Jul;96(1):104–116.
  • Zhao JL, Qiao XH, Mao JH, et al. The interaction between cellular senescence and chronic kidney disease as a therapeutic opportunity. Front Pharmacol. 2022;13:974361. doi: 10.3389/fphar.2022.974361
  • Rocha R, Funder JW. The pathophysiology of aldosterone in the cardiovascular system. Ann N Y Acad Sci. 2002 Sep;970(1):89–100. doi: 10.1111/j.1749-6632.2002.tb04415.x
  • Hollenberg NK. Aldosterone in the development and progression of renal injury. Kidney Int. 2004 Jul;66(1):1–9. doi: 10.1111/j.1523-1755.2004.00701.x
  • Lenzini L, Zanotti G, Bonchio M, et al. Aldosterone synthase inhibitors for cardiovascular diseases: A comprehensive review of preclinical, clinical and in silico data. Pharmacol Res. 2021 Jan;163:105332.
  • Amar L, Azizi M, Menard J, et al. Aldosterone synthase inhibition with LCI699: a proof-of-concept study in patients with primary aldosteronism. Hypertension. 2010 Nov;56(5):831–838.
  • Theilig F, Bostanjoglo M, Pavenstadt H, et al. Cellular distribution and function of soluble guanylyl cyclase in rat kidney and liver. J Am Soc Nephrol. 2001 Nov;12(11):2209–2220.
  • Sandner P, Zimmer DP, Milne GT, et al. Soluble guanylate cyclase stimulators and activators. Handb Exp Pharmacol. 2021;264:355–394.
  • Krishnan SM, Kraehling JR, Eitner F, et al. The impact of the nitric oxide (NO)/soluble guanylyl cyclase (SGC) signaling cascade on kidney health and disease: a preclinical perspective. Int J Mol Sci. 2018 Jun 9;19(6):1712. doi: 10.3390/ijms19061712
  • Ratliff BB, Abdulmahdi W, Pawar R, et al. Oxidant mechanisms in renal injury and disease. Antioxid Redox Signal. 2016 Jul 20;25(3):119–146. doi: 10.1089/ars.2016.6665
  • Zhao YY, Cheng XL, Lin RC. Lipidomics applications for discovering biomarkers of diseases in clinical chemistry. Int Rev Cell Mol Biol. 2014;313:1–26.
  • Kalaitzidis RG, Elisaf MS. The role of statins in chronic kidney disease. Am J Nephrol. 2011;34(3):195–202. doi: 10.1159/000330355
  • Antonopoulos AS, Margaritis M, Lee R, et al. Statins as anti-inflammatory agents in atherogenesis: molecular mechanisms and lessons from the recent clinical trials. Curr Pharm Des. 2012;18(11):1519–1530. doi: 10.2174/138161212799504803
  • Violi F, Calvieri C, Ferro D, et al. Statins as antithrombotic drugs. Circulation. 2013 Jan 15;127(2):251–257. doi: 10.1161/CIRCULATIONAHA.112.145334
  • Streja E, Gosmanova EO, Molnar MZ, et al. Association of continuation of statin therapy initiated before transition to chronic dialysis therapy with mortality after dialysis initiation. JAMA Netw Open. 2018 Oct 5;1(6):e182311. doi: 10.1001/jamanetworkopen.2018.2311
  • Theofilis P, Vordoni A, Koukoulaki M, et al. Dyslipidemia in chronic kidney disease: contemporary concepts and future therapeutic perspectives. Am J Nephrol. 2021;52(9):693–701. doi: 10.1159/000518456
  • Sasaki Y, Raza-Iqbal S, Tanaka T, et al. gene expression profiles induced by a novel Selective Peroxisome Proliferator-Activated Receptor α Modulator (SPPARMα) Pemafibrate. Int J Mol Sci. 2019 Nov 13;20(22):5682. doi: 10.3390/ijms20225682
  • Lee E, Gibbs JP, Emery MG, et al. Influence of renal function on evolocumab exposure, pharmacodynamics, and safety. Clin Pharmacol Drug Dev. 2019 Apr;8(3):281–289.
  • Landmesser U, Ray KK, Raal F, et al. EFFICACY and SAFETY of INCLISIRAN in PATIENTS with CHRONIC KIDNEY DISEASE - A POOLED ANALYSIS from THREE PHASE 3 CLINICAL TRIALS (ORION-9, -10 AND -11). J Am Coll Cardiol. 2021;77(18_Supplement_1):1458–1458. doi: 10.1016/S0735-1097(21)02816-3
  • Chen DQ, Wu J, Li P. Therapeutic mechanism and clinical application of Chinese herbal medicine against diabetic kidney disease. Front Pharmacol. 2022;13:1055296. doi: 10.3389/fphar.2022.1055296
  • Chen YQ, Chen HY, Tang QQ, et al. Protective effect of quercetin on kidney diseases: From chemistry to herbal medicines. Front Pharmacol. 2022;13:968226. doi: 10.3389/fphar.2022.968226
  • Ren LL, Li XJ, Duan TT, et al. Transforming growth factor-beta signaling: From tissue fibrosis to therapeutic opportunities. Chem Biol Interact. 2023 Jan 5;369:110289. doi: 10.1016/j.cbi.2022.110289
  • Yu XY, Sun Q, Zhang YM, et al. TGF-beta/Smad signaling pathway in tubulointerstitial fibrosis. Front Pharmacol. 2022;13:860588. doi: 10.3389/fphar.2022.860588
  • Miao H, Wu XQ, Wang YN, et al. 1-Hydroxypyrene mediates renal fibrosis through aryl hydrocarbon receptor signalling pathway. Br J Pharmacol. 2022 Jan;179(1):103–124.
  • Huang J, Liang Y, Zhou L. Natural products for kidney disease treatment: Focus on targeting mitochondrial dysfunction. Front Pharmacol. 2023;14:1142001. doi: 10.3389/fphar.2023.1142001
  • Liu P, Chen Y, Xiao J, et al. Protective effect of natural products in the metabolic-associated kidney diseases via regulating mitochondrial dysfunction. Front Pharmacol. 2022;13:1093397. doi: 10.3389/fphar.2022.1093397
  • Zheng L, Luo M, Zhou H, et al. Natural products from plants and microorganisms: Novel therapeutics for chronic kidney disease via gut microbiota regulation. Front Pharmacol. 2022;13:1068613. doi: 10.3389/fphar.2022.1068613
  • Zheng M, Hu Z, Wang Y, et al. Zhen Wu decoction represses renal fibrosis by invigorating tubular NRF2 and TFAM to fuel mitochondrial bioenergetics. Phytomedicine. 2023 Jan;108:154495.
  • Liu B, Jie X, Deng J, et al. Bupi Yishen formula may prevent kidney fibrosis by modulating fatty acid metabolism in renal tubules. Phytomedicine. 2023 Jun;114:154767.
  • Wang YN, Zhang ZH, Liu HJ, et al. Integrative phosphatidylcholine metabolism through phospholipase A(2) in rats with chronic kidney disease. Acta Pharmacol Sin. 2023 Feb;44(2):393–405.
  • Luo LP, Suo P, Ren LL, et al. Shenkang injection and its three anthraquinones ameliorates renal fibrosis by simultaneous targeting IkB/NF-Kb and Keap1/Nrf2 signaling pathways. Front Pharmacol. 2021;12:800522. doi: 10.3389/fphar.2021.800522
  • Hao J, Huang X, Guan J, et al. Shenkang injection protects against renal fibrosis by reducing perforin expression through the STING/TBK1/IRF3 signaling pathways in natural killer cells. Phytomedicine. 2022 Sep;104:154206.
  • Wang YN, Liu HJ, Ren LL, et al. Shenkang injection improves chronic kidney disease by inhibiting multiple renin-angiotensin system genes by blocking the Wnt/beta-catenin signalling pathway. Front Pharmacol. 2022;13:964370. doi: 10.3389/fphar.2022.964370
  • Wang M, Chen DQ, Chen L, et al. Novel inhibitors of the cellular renin-angiotensin system components, poricoic acids, target Smad3 phosphorylation and Wnt/beta-catenin pathway against renal fibrosis. Br J Pharmacol. 2018 Jul;175(13):2689–2708.
  • Tao S, Yang L, Wu C, et al. Gambogenic acid alleviates kidney fibrosis via epigenetic inhibition of EZH2 to regulate Smad7-dependent mechanism. Phytomedicine. 2022 Nov;106:154390.
  • Yao L, Zhao R, He S, et al. Effects of salvianolic acid a and salvianolic acid B in renal interstitial fibrosis via PDGF-C/PDGFR-alpha signaling pathway. Phytomedicine. 2022 Nov;106:154414.
  • Wang M, Wang L, Zhou Y, et al. Shen Shuai II Recipe attenuates renal fibrosis in chronic kidney disease by improving hypoxia-induced the imbalance of mitochondrial dynamics via PGC-1alpha activation. Phytomedicine. 2022 Jan 19;98:153947. doi: 10.1016/j.phymed.2022.153947
  • Cai Y, Feng Z, Jia Q, et al. Cordyceps cicadae ameliorates renal hypertensive injury and fibrosis through the regulation of sirt1-mediated autophagy. Front Pharmacol. 2021;12:801094. doi: 10.3389/fphar.2021.801094
  • Cao G, Miao H, Wang YN, et al. Intrarenal 1-methoxypyrene, an aryl hydrocarbon receptor agonist, mediates progressive tubulointerstitial fibrosis in mice. Acta Pharmacol Sin. 2022 Nov;43(11):2929–2945.
  • Yao M, Qin S, Xiong J, et al. Oroxylin a ameliorates AKI-to-CKD transition through maintaining PPARalpha-BNIP3 signaling-mediated mitochondrial homeostasis. Front Pharmacol. 2022;13:935937. doi: 10.3389/fphar.2022.935937
  • Wang Z, Wu Q, Wang H, et al. Diosgenin protects against podocyte injury in early phase of diabetic nephropathy through regulating SIRT6. Phytomedicine. 2022 Sep;104:154276.
  • Gu M, Zhou Y, Liao N, et al. Chrysophanol, a main anthraquinone from Rheum palmatum L. (rhubarb), protects against renal fibrosis by suppressing NKD2/NF-kappaB pathway. Phytomedicine. 2022 Oct;105:154381.
  • Guan Z, Wang Y, Xu H, et al. Isoandrographolide from Andrographis paniculata ameliorates tubulointerstitial fibrosis in ureteral obstruction-induced mice, associated with negatively regulating AKT/GSK-3beta/beta-cat signaling pathway. Int Immunopharmacol. 2022 Nov;112:109201.
  • Yi ZY, Peng YJ, Hui BP, et al. Zuogui-Jiangtang-Yishen decoction prevents diabetic kidney disease: Intervene pyroptosis induced by trimethylamine n-oxide through the Mros-NLRP3 axis. Phytomedicine. 2023 Jun;114:154775.
  • Liu J, Gao LD, Fu B, et al. Efficacy and safety of Zicuiyin decoction on diabetic kidney disease: A multicenter, randomized controlled trial. Phytomedicine. 2022 Jun;100:154079.
  • Chen L, Ye Z, Wang D, et al. Chuan Huang Fang combining reduced glutathione in treating acute kidney injury (grades 1-2) on chronic kidney disease (stages 2-4): A multicenter randomized controlled clinical trial. Front Pharmacol. 2022;13:969107. doi: 10.3389/fphar.2022.969107
  • Sun X, Li P, Lin H, et al. Efficacy and safety of Abelmoschus manihot in treating chronic kidney diseases: A multicentre, open-label and single-arm clinical trial. Phytomedicine. 2022 Mar 3;99:154011. doi: 10.1016/j.phymed.2022.154011
  • Yoshino T, Horiba Y, Mimura M, et al. Oral astragalus root supplementation for mild to moderate chronic kidney disease: a self-controlled case-series. Front Pharmacol. 2022;13:775798. doi: 10.3389/fphar.2022.775798
  • Chen YC, Chen HT, Yeh CC, et al. Four prescribed Chinese herbal medicines provide renoprotection and survival benefit without hyperkalemia risk in patients with advanced chronic kidney disease: A nationwide cohort study. Phytomedicine. 2022 Jan;95:153873.
  • Liu X, Ge M, Zhai X, et al. Traditional Chinese medicine for the treatment of diabetic kidney disease: A study-level pooled analysis of 44 randomized controlled trials. Front Pharmacol. 2022;13:1009571. doi: 10.3389/fphar.2022.1009571
  • Shen HS, Hsu CY, Yip HT, et al. Lower risk of ischemic stroke among patients with chronic kidney disease using chinese herbal medicine as add-on therapy: A real-world nationwide cohort study. Front Pharmacol. 2022;13:883148. doi: 10.3389/fphar.2022.883148
  • Wang YN, Feng HY, Nie X, et al. Recent advances in clinical diagnosis and pharmacotherapy options of membranous nephropathy. Front Pharmacol. 2022;13:907108. doi: 10.3389/fphar.2022.907108
  • Miao H, Zhang Y, Yu X, et al. Membranous nephropathy: Systems biology-based novel mechanism and traditional Chinese medicine therapy. Front Pharmacol. 2022;13:969930. doi: 10.3389/fphar.2022.969930
  • Hua MR, Zhao YL, Yang JZ, et al. Membranous nephropathy: Mechanistic insights and therapeutic perspectives. Int Immunopharmacol. 2023 May 17;120:110317. doi: 10.1016/j.intimp.2023.110317
  • Wang YN, Miao H, Hua MR, et al. Moshen granule ameliorates membranous nephropathy by blocking intrarenal renin-angiotensin system signalling via the Wnt1/beta-catenin pathway. Phytomedicine. 2023 Jun;114:154763.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.