239
Views
20
CrossRef citations to date
0
Altmetric
Articles

Sintering behaviour and mechanical characterisation of Ti64/xTiN composites and bilayer components

ORCID Icon, ORCID Icon, , , &
Pages 257-266 | Received 20 Oct 2016, Accepted 03 Jan 2017, Published online: 11 Feb 2017

References

  • Chen W, Yamamoto Y, Peter WH, et al. Cold compaction study of Armstrong Process® Ti–6Al–4V powders. Powder Technol. 2011;214(2):194–199. doi: 10.1016/j.powtec.2011.08.007
  • Das M, Bhattacharya K, Dittrick SA, et al. In situ synthesized TiB–TiN reinforced Ti6Al4V alloy composite coatings: microstructure, tribological and in-vitro biocompatibility. J Mech Behav Biomed Mater. 2014;29:259–271. doi: 10.1016/j.jmbbm.2013.09.006
  • Sha W, Malinov S. Titanium alloys: modelling of microstructure, properties and applications. Cambridge: Elsevier Science; 2009.
  • Lütjering G, Williams JC. Titanium. Heidelberg, Germany: Springer; 2007.
  • Yazdi R, Kashani-Bozorg SF. Microstructure and wear of in-situ Ti/(TiN + TiB) hybrid composite layers produced using liquid phase process. Mater Chem Phys. 2015;152:147–157. doi: 10.1016/j.matchemphys.2014.12.026
  • Cui ZD, Zhu SL, Man HC, et al. Microstructure and wear performance of gradient Ti/TiN metal matrix composite coating synthesized using a gas nitriding technology. Surf Coat Technol. 2005;190(2–3):309–313. doi: 10.1016/j.surfcoat.2004.02.012
  • Froes Sam FH. Powder metallurgy of titanium alloys. In: Chang I, Zhao Y, editors. Advances in powder metallurgy. Cambridge: Woodhead Publishing; 2013. p. 202–240.
  • Cho M, Hong E, So J, et al. Tribological properties of biocompatible Ti–10W and Ti–7.5TiC–7.5W. J Mech Behav Biomed Mater. 2014;30:214–222. doi: 10.1016/j.jmbbm.2013.11.014
  • Poletti C, Merstallinger A, Schubert TH, et al. Wear and friction coefficient of particle reinforced Ti-Alloys. Materialwiss Werkst. 2004;35(10–11):741–749. doi: 10.1002/mawe.200400818
  • Sanguinetti Ferreira RA, Arvieu C, Guillaume B, et al. Titanium matrix composites processed by continuous binder-powder coating: an alternative fabrication route. Compos Part A Appl Sci Manuf. 2006;37(10):1831–1836. doi: 10.1016/j.compositesa.2005.10.004
  • Gordon FH, Turner SP, Taylor R, et al. Third international conference on interfacial phenomena in composite materials the effect of the interface on the thermal conductivity of titanium-based composites. Composites. 1994;25(7):583–592. doi: 10.1016/0010-4361(94)90188-0
  • Guo ZX, Derby B. Third international conference on interfacial phenomena in composite materials chemistry effects on interface microstructure and reaction in titanium-based composites. Composites. 1994;25(7):630–636. doi: 10.1016/0010-4361(94)90195-3
  • Yuan MN, Yang YQ, Luo HJ. Evaluation of interfacial properties in SiC fiber reinforced titanium matrix composites using an improved finite element model. Mater Char. 2008;59(12):1684–1689. doi: 10.1016/j.matchar.2008.03.010
  • Lieberman SI, Gokhale AM, Tamirisakandala S, et al. Three-dimensional microstructural characterization of discontinuously reinforced Ti64–TiB composites produced via blended elemental powder metallurgy. Mater Char. 2009;60(9):957–963. doi: 10.1016/j.matchar.2009.03.013
  • Yan Z, Chen F, Cai Y, et al. Microstructure and mechanical properties of in-situ synthesized TiB whiskers reinforced titanium matrix composites by high-velocity compaction. Powder Technol. 2014;267:309–314. doi: 10.1016/j.powtec.2014.07.048
  • Selva Kumar M, Chandrasekar P, Chandramohan P, et al. Characterisation of titanium–titanium boride composites processed by powder metallurgy techniques. Mater Char. 2012;73:43–51. doi: 10.1016/j.matchar.2012.07.014
  • Yu Y, Zhang W, Dong W, et al. Research on heat treatment of TiBw/Ti6Al4V composites tubes. Mater Des. 2015;73:1–9. doi: 10.1016/j.matdes.2015.02.021
  • Huang LJ, Geng L, Xu HY, et al. In situ TiC particles reinforced Ti6Al4V matrix composite with a network reinforcement architecture. Mater Sci Eng A. 2011;528(6):2859–2862. doi: 10.1016/j.msea.2010.12.046
  • Huang LJ, Geng L, Li AB, et al. In situ TiBw/Ti–6Al–4V composites with novel reinforcement architecture fabricated by reaction hot pressing. Scripta Mater. 2009;60(11):996–999. doi: 10.1016/j.scriptamat.2009.02.032
  • Huang LJ, Geng L, Wang B, et al. Effects of extrusion and heat treatment on the microstructure and tensile properties of in situ TiBw/Ti6Al4V composite with a network architecture. Compos Part A Appl Sci Manuf. 2012;43(3):486–491. doi: 10.1016/j.compositesa.2011.11.014
  • Huang LJ, Geng L, Wang B, et al. Effects of volume fraction on the microstructure and tensile properties of in situ TiBw/Ti6Al4V composites with novel network microstructure. Mater Des. 2013;45:532–538. doi: 10.1016/j.matdes.2012.09.043
  • Dabhade VV, Mohan TRR, Ramakrishnan P. Sintering behavior of titanium–titanium nitride nanocomposite powders. J Alloys Comp. 2008;453(1–2):215–221. doi: 10.1016/j.jallcom.2006.11.187
  • Dabhade VV, Mohan TRR, Ramakrishnan P. Dilatometric sintering study of titanium–titanium nitride nano/nanocomposite powders. Powder Metall. 2007;50(1):33–39. doi: 10.1179/174329007X186390
  • Liu Y, Chen LF, Tang HP, et al. Design of powder metallurgy titanium alloys and composites. Mater Sci Eng A. 2006;418(1–2):25–35. doi: 10.1016/j.msea.2005.10.057
  • Murr LE, Quinones SA, Gaytan SM, et al. Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications. J. Mech Behav Biomed Mater. 2009;2(1):20–32. doi: 10.1016/j.jmbbm.2008.05.004
  • Bolzoni L, Esteban PG, Ruiz-Navas EM, et al. Mechanical behaviour of pressed and sintered titanium alloys obtained from prealloyed and blended elemental powders. J Mech Behav Biomed Mater. 2012;14:29–38. doi: 10.1016/j.jmbbm.2012.05.013
  • Amigó V, Salvador MD, Romero F, et al. Microstructural evolution of Ti–6Al–4V during the sintering of microspheres of Ti for orthopedic implants. J Mater Process Technol. 2003;141(1):117–122. doi: 10.1016/S0924-0136(03)00243-7
  • German RM. Sintering theory and practice. New York: Wiley; 1996.
  • Kang SJL. Sintering: densification, grain growth and microstructure. Burlington (MA): Elsevier Science; 2004.
  • Erinosho MF, Akinlabi ET, Pityana S. Microstructure and corrosion behaviour of laser metal deposited Ti6Al4V/Cu composites in 3.5% sea water. Mater Today: Proc. 2015;2(4–5):1166–1174. doi: 10.1016/j.matpr.2015.07.028
  • Gorsse S, Miracle DB. Mechanical properties of Ti-6Al-4V/TiB composites with randomly oriented and aligned TiB reinforcements. Acta Mater. 2003;51(9):2427–2442. doi: 10.1016/S1359-6454(02)00510-4
  • Zhu SJ, Mukherji D, Chen W, et al. Steady state creep behaviour of TiC particulate reinforced Ti–6Al–4V composite. Mater Sci Eng A. 1998;256(1–2):301–307. doi: 10.1016/S0921-5093(98)00617-0
  • Huang LJ, Geng L, Peng HX, et al. High temperature tensile properties of in situ TiBw/Ti6Al4V composites with a novel network reinforcement architecture. Mater Sci Eng A. 2012;534:688–692. doi: 10.1016/j.msea.2011.12.028
  • Dabhade VV, Mohan TRR, Ramakrishnan P. Initial sintering kinetics of titanium–titanium nitride nano/nanocomposite powders. Powder Metall. 2007;50(2):157–164. doi: 10.1179/174329007X162008
  • Mortensen A, Suresh S. Functionally graded metals and metal-ceramic composites: part 1 processing. Int Mater Rev. 1995;40(6):239–265. doi: 10.1179/imr.1995.40.6.239
  • Shishkovsky I, Missemer F, Smurov I. Direct metal deposition of functional graded structures in Ti–Al System. Phys Procedia. 2012;39:382–391. doi: 10.1016/j.phpro.2012.10.052
  • Balla VK, DeVasConCellos PD, Xue W, et al. Fabrication of compositionally and structurally graded Ti–TiO2 structures using laser engineered net shaping (LENS). Acta Biomater. 2009;5(5):1831–1837. doi: 10.1016/j.actbio.2009.01.011
  • Feng H, Meng Q, Zhou Y, et al. Spark plasma sintering of functionally graded material in the Ti–TiB2–B system. Mater Sci Eng A. 2005;397(1-2):92–97. doi: 10.1016/j.msea.2005.02.003
  • Greco A, Strafella A, Tegola CL, et al. Assessment of the relevance of sintering in thermoplastic commingled yarn consolidation. Polym Compos. 2011;32(4):657–664. doi: 10.1002/pc.21080
  • Riedel R, Toma L, Fasel C, et al. Polymer-derived mullite–SiC-based nanocomposites. J Eur Ceram Soc. 2009;29(14):3079–3090. doi: 10.1016/j.jeurceramsoc.2009.05.016
  • Panigrahi BB, Godkhindi MM, Das K, et al. Sintering kinetics of micrometric titanium powder. Mater Sci Eng A. 2005;396(1–2):255–262. doi: 10.1016/j.msea.2005.01.016
  • Xu X, Nash P. Sintering mechanisms of Armstrong prealloyed Ti–6Al–4V powders. Mater Sci Eng A. 2014;607(0):409–416. doi: 10.1016/j.msea.2014.03.045
  • Guden M, Celik E, Akar E, et al. Compression testing of a sintered Ti6Al4V powder compact for biomedical applications. Mater Charact. 2005;54(4–5):399–408. doi: 10.1016/j.matchar.2005.01.006
  • Ziya E, Bor ET, Şakir B. Characterization of loose powder sintered porous titanium and Ti6Al4 V alloy. Turkish J Eng Environ Sci. 2009;33(3):207–219.
  • Taşdemirci A, Hızal A, Altındiş M, et al. The effect of strain rate on the compressive deformation behavior of a sintered Ti6Al4V powder compact. Mater Sci Eng A. 2008;474(1–2):335–341. doi: 10.1016/j.msea.2007.05.023
  • Donachie MJ. Titanium: a technical guide. 2nd ed. Materials Park (OH): ASM International; 2000.
  • Fan Y, Tian W, Guo Y, et al. Relationships among the microstructure, mechanical properties, and fatigue behavior in thin Ti6Al4V. Adv Mater Sci Eng. 2016;2016:9.
  • Hill D, Banerjee R, Huber D, et al. Formation of equiaxed alpha in TiB reinforced Ti alloy composites. Scripta Mater. 2005;52(5):387–392. doi: 10.1016/j.scriptamat.2004.10.019
  • Benedetti M, Fontanari V. The effect of bi-modal and lamellar microstructures of Ti-6Al-4V on the behaviour of fatigue cracks emanating from edge-notches. Fatigue Fracture Eng Mater Struct. 2004;27(11):1073–1089. doi: 10.1111/j.1460-2695.2004.00825.x
  • Nalla RK, Ritchie RO, Boyce BL, et al. Influence of microstructure on high-cycle fatigue of Ti-6Al-4V: Bimodal vs. lamellar structures. Metall Mater Trans A. 2002;33(3):899–918. doi: 10.1007/s11661-002-0160-z
  • Romero F, Amigó V, Salvador MD, et al. Interactions in titanium matrix composites reinforced by titanium compounds by conventional PM route. Mater Sci Forum. 2007;534-536:817–820. Trans Tech Publ. doi: 10.4028/www.scientific.net/MSF.534-536.817

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.