531
Views
21
CrossRef citations to date
0
Altmetric
Articles

Contamination in wet-ball milling

Pages 267-272 | Received 31 Dec 2015, Accepted 05 Jan 2017, Published online: 01 Feb 2017

References

  • Benjamin JS. Mechanical alloying. Sci Am. 1976;234:40–48. doi: 10.1038/scientificamerican0576-40
  • Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci. 2001;46:1–184. doi: 10.1016/S0079-6425(99)00010-9
  • Mo L, Lu L. Ball alloying. Boston (MA): Kluwer Academic Publishers; 1998.
  • Guerard D, Janot R, Ghanbaja J, et al. Ball-milling with a fluid: a powerful means for new syntheses. J Alloys Compd. 2007;434–435:410–414. doi: 10.1016/j.jallcom.2006.08.318
  • Rabiee M, Mirzadeh H, Ataie A. Unraveling the effects of process control agents on mechanical alloying of nanostructured Cu-Fe alloy. J. Ultrafine Grained Nanostruct Mater. 2016;49:17–21.
  • Joshi PB, Marathe R, Pratap A, et al. Effect of addition of process control agent (PCA) on the nanocrystalline behavior of elemental silver during high energy milling. Hyperfine Interact. 2005;160:173–180. doi: 10.1007/s10751-005-9161-9
  • Gaffet E, Harmelin M, Faudot F. Far-from-equilibrium phase transition induced by mechanical alloying in the Cu-Fe system. J Alloys Compd. 1993;194:23 –30. doi: 10.1016/0925-8388(93)90640-9
  • Udhayabanu V, Ravi KR, Murty BS. Ultrafine-grained, high-strength NiAl with Al2O3 and Al4C3 nanosized particles dispersed via mechanical alloying in toluene with spark plasma sintering. Mater Sci Eng A. 2013;585:379–386. doi: 10.1016/j.msea.2013.07.024
  • Shiba1 D, Yamasue E, Ishihara1 KN., et al. Effect of process control agents (PCAs) on mechanochemical processes and contamination science. Mater Sci Forum. 2014;783–786:2665–2670. doi: 10.4028/www.scientific.net/MSF.783-786.2665
  • Lee W, Kwun SI. The effects of process control agents on mechanical alloying mechanisms in the Ti-Al system. J Alloys Compd. 1996;240:193 –199.
  • Goodwin PS, Ward-Close CM. Contamination control in the mechanical alloying of nanocrystalline intermetallic based alloys. Mater Sci Forum. 1995;179:411 –418. doi: 10.4028/www.scientific.net/MSF.179-181.411
  • Griffiths AJV, Walther T. Quantification of carbon contamination under electron beam irradiation in a scanning transmission electron microscope and its suppression by plasma cleaning. J Phys: Conf Ser. 2010;241:012017.
  • Angelo PC, Subramanian R. PHI Learning Pvt. Ltd, 2008; ISBN 8120332814.
  • Na N, Lozano-Perez S, Sykes J, et al. Quantitative EELS analysis of zirconium alloy metal/oxide interfaces. Ultramicroscopy. 2011;111:123–130. doi: 10.1016/j.ultramic.2010.10.020
  • Morris DG, Muñoz-Morris MA. High-resolution chemical analysis by STEM-EELS of nanosized oxide particles in a mechanically-alloyed FeCrAl intermetallic. Mater Charact. 2015;103:120–124. doi: 10.1016/j.matchar.2015.03.023
  • Poudyal N, Rong C-B, Liu JP. Morphological and magnetic characterization of Fe, Co, and FeCo nanoplates and nanoparticles prepared by surfactants-assisted ball milling. J Appl Phys. 2011;109:07B526. doi: 10.1063/1.3561157
  • Peter A. Physical chemistry. Oxfordshire: Oxford University Press; 2010. p. 913 –947.
  • Lide DR. CRC handbook of chemistry and physics (90th edition). Boca Raton (FL): CRC Press; 2009.
  • NIST Chemistry WebBook, NIST Standard Reference Database Number 69. http://webbook.nist.gov (retrieved 2015-08-08).
  • Fris T, Halasz I, Beldon PJ, et al. Real-time and in situ monitoring of mechanochemical milling reactions. Nat Chem. 2013;5:66–73.
  • Aktah D, Frank I. Breaking bonds by mechanical stress: where do electrons decide for the other side? J Am Chem Soc. 2002;124:3402–3406. doi: 10.1021/ja004010b
  • Smalø HS, Uggerud E. Breaking covalent bonds using mechanical force, which bond breaks? Mol Phys. 2013;111:1563–1573. doi: 10.1080/00268976.2013.811554
  • Suryanarayana C, Al-Aqeeli N. Mechanically alloyed nanocomposites. Prog Mat Sci. 2013:58:383–502. doi: 10.1016/j.pmatsci.2012.10.001
  • Sarwat SG, Ravi KR. Phase evolution in high entropy alloys: role of synthesis route. Intermetallics. 2016;73:40–42. doi: 10.1016/j.intermet.2016.03.002
  • Terayama A, Kyogoku H, Sakamura M, et al. Fabrication of TiNi powder by mechanical alloying and shape memory characteristics of the sintered alloy. Mater Trans. 2006;47:550–557. doi: 10.2320/matertrans.47.550
  • Cipolloni G, Pellizzari M, Molinari A, et al. Contamination during the high-energy milling of atomized copper powder and its effects on spark plasma sintering. Powder Technol. 2015;275:51–59. doi: 10.1016/j.powtec.2015.01.063
  • Joyita De AM, Umarji KC. Origin of contamination and role of mechanochemistry duringmechanical alloying: the case of Ag–Te alloys. Mater Sci Eng A. 2007;449–451:1062–1066. doi: 10.1016/j.msea.2006.02.268
  • Muramatsu Y, Wanikawa S, Ohtaguchi M, et al. Gas contamination due to milling atmospheres of mechanical alloying and its effect on impact strength. Mater Trans. 2005;46:681–686. doi: 10.2320/matertrans.46.681
  • Wilson PJ, Blackburn S, Greenwood RW, et al. The effect of alumina contamination from the ball-milling of fused silica on the high temperature properties of injection moulded silica ceramic components. J Ep Ceram Soc. 2011;31:977–981. doi: 10.1016/j.jeurceramsoc.2010.12.016
  • Štefanić G, Krehula S., Štefanić I. Phase development during high-energy ball-milling of zinc oxide and iron - the impact of grain size on the source and the degree of contamination. Dalton Trans. 2015;44:18870–18881. doi: 10.1039/C5DT02498F
  • Ramya M, Sarwat SG, Udhayabanu V, et al. Exploring Mg-Zn-Ca-Based bulk metallic glasses for biomedical applications based on thermodynamic approach. Metall Mat Trans A. 2015;46:5962–5971. doi: 10.1007/s11661-015-3124-9
  • Sarwat SG, Ramya M, Ali PS, et al. A new thermodynamic parameter GCE for identification of glass forming compositions. J Alloys Compd. 2015;627:337–343. doi: 10.1016/j.jallcom.2014.11.214
  • Murty BS, Ping H, Hono K, et al. Influence of oxygen on the crystallization behavior of Zr65Cu27.5Al7.5 and Zr66.7Cu33.3 metallic glasses. Acta Mater. 2000;48:3985–3996. doi: 10.1016/S1359-6454(00)00190-7
  • Suryanarayana C. Does a disordered γ-TiAl phase exist in mechanically alloyed Ti-Al powders? Intermetallics. 1995;3:153–160. doi: 10.1016/0966-9795(95)92680-X
  • Frazier WE, Koczak MJ. A fundamental study of the mechanical and microstructural response of elevated temperature PM aluminum-titanium alloys. Scripta Metal. 1987,;21:129 –134. doi: 10.1016/0036-9748(87)90422-4
  • Keskinen J, Pogany A, Rubin J, et al. Carbide and hydride formation during mechanical alloying of titanium and aluminium with hexane. Mater Sci Eng A. 1995;196:205 –211. doi: 10.1016/0921-5093(94)09701-1
  • Chen G, Wang K, Wang J, et al. In: deBarbadillo JJ, editor. Mechanical alloying for structural applications. ASM International, 1993. p. 183–187.
  • Besterci M, Dobeš F, Sülleiová K, et al. Mechanical properties of Al-Al4C3 composite produced by mechanical alloying. Universal J Mater Sci. 2013;1:31–38.
  • Bertrand A, Carreaud J, Delaizir G, et al. A comprehensive study of the carbon contamination in tellurite glasses and glass-ceramics sintered by spark plasma sintering (SPS). J Am Ceram Soc. 2013;97:163–172. doi: 10.1111/jace.12657
  • Bokhonov BB, Ukhina AV, Dudina DV, et al. Carbon uptake during spark plasma sintering: investigation through the analysis of the carbide “footprint” in a Ni–W alloy. RSC Adv. 2015;5:80228–80237. doi: 10.1039/C5RA15439A
  • Bernard-Granger G, Benameur N, Guizard C, et al. Influence of graphite contamination on the optical properties of transparent spinel obtained by spark plasma sintering. Scr Mater. 2009;60:164–167. doi: 10.1016/j.scriptamat.2008.09.027

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.