322
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Reduction of the embrittlement effect of binder contamination in MIM processing of Ti alloys

, , , , & ORCID Icon
Pages 157-166 | Received 29 Nov 2016, Accepted 30 Jan 2017, Published online: 04 Mar 2017

References

  • German R. Progress in titanium metal powder injection moulding. Materials. 2013;6:3641–3662. doi: 10.3390/ma6083641
  • Ebel T, Friederici V, Imgrund P, et al. Metal injection moulding of titanium. In: Qian M, Froes FH, editors. Titanium powder metallurgy. Butterworth-Heinemann; 2015. p. 337–360 (ISBN: 978-0-12-800054-0).
  • Aust E, Limberg W, Gerling R, et al. Advanced TiAl6Nb7 bone screw implant fabricated by metal injection moulding. Adv Eng Mater. 2006;8(5):365–370. doi: 10.1002/adem.200500134
  • Osada T, Miura H, Itoh Y, et al. Optimization of MIM process for Ti-6Al-7Nb alloy powder. J Jpn Soc Powder Powder Metall. 2008;55:726–731. doi: 10.2497/jjspm.55.726
  • Limberg W, Ebel T, Pyczak F, et al. Influence of the sintering atmosphere on the tensile properties of MIM processed Ti 45Al 5Nb 0.2B 0.2C. Mat Sci Eng A. 2012;552:323–329. doi: 10.1016/j.msea.2012.05.047
  • Miura H, Kang H, Itoh Y. High performance titanium alloy compacts by advanced powder processing techniques. Key Eng Mat. 2012;520:30–40. doi: 10.4028/www.scientific.net/KEM.520.30
  • Ebel T, Ferri OM. Processing of Ti-15V-3Al-3Sn-3Cr by metal injection moulding. Proceedings of EuroPM 2011, Vol. 2; 2011 Oct 9–12; Barcelona, Spain. p. 265–270.
  • Bidaux J-E, Closuit C, Rodriguez-Arbaizar M, et al. Metal injection moulding of Ti–Nb alloys for implant application. Eur Cells Mater. 2011;22:32.
  • Zhang H, He X, Qu X, et al. Microstructure and mechanical properties of high Nb containing TiAl alloy parts fabricated by metal injection molding. Mat Sci Eng A. 2009;526:31–37. doi: 10.1016/j.msea.2009.07.003
  • Xia Y, Schaffer GB, Qian M. The effect of a small addition of nickel on the sintering, sintered microstructure, and mechanical properties of Ti–45Al–5Nb–0.2C–0.2B alloy. J Alloys Compd. 2013;578:195–201. doi: 10.1016/j.jallcom.2013.05.104
  • Takekawa J, Sakurai N. Effect of processing conditions on density, strength and microstructure of Ti-12Mo alloy fabricated by PIM process. J Jpn Soc Powder Powder Metall. 1999;46:877–881. doi: 10.2497/jjspm.46.877
  • Baril E, Lefebvre LP, Thomas Y. Interstitial elements in titanium powder metallurgy: sources and control. Powder Metall. 2011;54(3):183–186. doi: 10.1179/174329011X13045076771759
  • Yan M, Dargusch MS, Ebel T, et al. A transmission electron microscopy and three dimensional atom probe study of the oxygen-induced fine microstructural features in as sintered Ti-6Al-4V and their impacts on ductility. Acta Mater. 2014;68:196–206. doi: 10.1016/j.actamat.2014.01.015
  • Ebel T, Ferri OM, Limberg W, et al. Metal injection moulding of titanium and titanium-aluminides. Key Eng Mat. 2012;520:153–160. doi: 10.4028/www.scientific.net/KEM.520.153
  • Yan WXM. Review of effect of oxygen on room temperature ductility of titanium and titanium alloys. Powder Metall. 2014;57(4):251–257. doi: 10.1179/1743290114Y.0000000108
  • Yan M, Qian M, Kong C, et al. Impacts of trace carbon on the microstructure of as-sintered biomedical Ti–15Mo alloy and reassessment of the maximum carbon limit. Acta Biomater. 2014;10(2):1014–1023. doi: 10.1016/j.actbio.2013.10.034
  • Zhao D, Chang K, Ebel T, et al. Microstructure and mechanical behavior of metal injection molded Ti–Nb binary alloys as biomedical material. J Mech Behav Biomed Mater. 2013;28:171–182. doi: 10.1016/j.jmbbm.2013.08.013
  • Zhao D, Ebel T, Yan M, et al. Trace carbon in biomedical β-titanium alloys: recent progress. J Metall. 2015;67(10):2236–2243.
  • Shatynski SR. The thermochemistry of transition metal carbides. Oxid Met. 1979;13(2):105–118. doi: 10.1007/BF00611975
  • Ferri OM, Ebel T, Bormann R. High cycle fatigue behaviour of Ti–6Al–4V fabricated by metal injection moulding technology. Mater Sci Eng A. 2009;504(1–2):107–113. doi: 10.1016/j.msea.2008.10.039
  • Murray JL. The Ti-Zr (titanium-zirconium) system. Bull Alloy Phase Diagr. 1981;2(2):197–201. doi: 10.1007/BF02881478
  • Santos PF, Niinomi M, Liu HH, et al. Fabrication of low-cost β-typeTi–Mn alloys for biomedical applications by metal injection molding process and their mechanical properties. J Mech Behav Biomed Mater. 2016;59:497–507. doi: 10.1016/j.jmbbm.2016.02.035
  • Cho K, Niinomi M, Nakai M, et al. Improvement in mechanical strength of low-cost β-type Ti-Mn alloys fabricated by metal injection molding through cold rolling. J Alloys Compd. 2016;664:272–283. doi: 10.1016/j.jallcom.2015.12.200

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.