439
Views
2
CrossRef citations to date
0
Altmetric
Articles

SPS-assisted Synthesis of SICp reinforced high entropy alloys: reactivity of SIC and effects of pre-mechanical alloying and post-annealing treatment

ORCID Icon, ORCID Icon, , , , & show all
Pages 64-72 | Received 02 May 2017, Accepted 11 Oct 2017, Published online: 03 Nov 2017

References

  • Yeh JW, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6(5):299–303. doi: 10.1002/adem.200300567
  • Cantor B, et al. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng, A. 2004;375–377:213–218. doi: 10.1016/j.msea.2003.10.257
  • Yeh JW. Recent progress in high-entropy alloys, annales de chimie. Science des Materiaux (Paris). 2006;31(6):633–648.
  • Liu L, et al. Effects of Sn element on microstructure and properties of SnxAl2.5FeCoNiCu multi-component alloys. J Alloys Compd. 2016;654:327–332. doi: 10.1016/j.jallcom.2015.09.093
  • Tang Z, et al. Tensile ductility of an AlCoCrFeNi multi-phase high-entropy alloy through hot isostatic pressing (HIP) and homogenization. Mater Sci Eng A. 2015;647:229–240. doi: 10.1016/j.msea.2015.08.078
  • Poletti MG, et al. Development of a new high entropy alloy for wear resistance: FeCoCrNiW0.3 and FeCoCrNiW0.3 + 5 at.% of C. Mater Des. 2017;115:247–254. doi: 10.1016/j.matdes.2016.11.027
  • Wang R, et al. Evolution of microstructure, mechanical and corrosion properties of AlCoCrFeNi high entropy alloy prepared by direct laser fabrication. J Alloys Compd. 2017;694:971–981. doi: 10.1016/j.jallcom.2016.10.138
  • Senkov ON, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics. 2011;19(5):698–706. doi: 10.1016/j.intermet.2011.01.004
  • Tabachnikova ED, et al. Mechanical properties of the CoCrFeNiMnVx high entropy alloys in temperature range 4.2–300 K. J Alloys Compd. 2017;698:501–509. doi: 10.1016/j.jallcom.2016.12.154
  • Gludovatz B, et al. A fracture-resistant high entropy alloy for cryogenic applications. Science. 2014;345:1153–1158. doi: 10.1126/science.1254581
  • Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448–511. doi: 10.1016/j.actamat.2016.08.081
  • Zhang Y, et al. Microstructures and properties of high-entropy alloys. Prog. Mat. Sci. 2014;61:1–93. doi: 10.1016/j.pmatsci.2013.10.001
  • Joseph J. Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted AlxCoCrFeNi high entropy alloys. Mater Sci Eng A. 2015;633:184–193. doi: 10.1016/j.msea.2015.02.072
  • Sriharitha R, et al. Phase formation in mechanically alloyed AlxCoCrCuFeNi (x ¼ 0.45, 1, 2.5, 5 mol) high entropy alloys. Intermetallics. 2013;32:119–126. doi: 10.1016/j.intermet.2012.08.015
  • Tariq NH, et al. Effect of W and Zr on structural, thermal and magnetic properties of AlCoCrCuFeNi high entropy alloy. J Alloys Compd. 2013;556:79–85. doi: 10.1016/j.jallcom.2012.12.095
  • Hong SI, et al. Thermally activated deformation and the rate controlling mechanism in CoCrFeMnNi high entropy alloy. Mat Sci Eng A. 2017;682:569–576. doi: 10.1016/j.msea.2016.11.078
  • Varalakshmi S, Kamaraj M, Murty BS. Processing and properties of nanocrystalline CuNiCoZnAlTi high entropy alloys by mechanical alloying. Mater Sci Eng A. 2010;527:1027–1030. doi: 10.1016/j.msea.2009.09.019
  • Katakam S, et al. Laser assisted high entropy alloy coating on aluminum: microstructural evolution. J Appl Phys. 2014;116: 104906/1-104906-6. doi: 10.1063/1.4895137
  • Qiu XW, et al. Microstructure and corrosion resistance of AlCrFeCuCo high entropy alloy. J Alloys Compd. 2013;549:195–199. doi: 10.1016/j.jallcom.2012.09.091
  • Ji W, et al. Mechanical alloying synthesis and spark plasma sintering consolidation of CoCrFeNiAl high entropy alloy. J Alloys Compd. 2014;589:61–66 doi: 10.1016/j.jallcom.2013.11.146
  • Liu Y, et al. Preparation of superfine-grained high entropy alloy by spark plasma sintering gas atomized powder. Intermetallics. 2016;68:16–22. doi: 10.1016/j.intermet.2015.08.012
  • Mohanty S, et al. Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy: microstructure and mechanical properties. Mat Sci Eng A. 2017;679:299–313. doi: 10.1016/j.msea.2016.09.062
  • Soare V. Electrochemical deposition and microstructural characterization of AlCrFeMnNi and AlCrCuFeMnNi high entropy alloy. Appl Surf Sci. 2015;358:533–539. doi: 10.1016/j.apsusc.2015.07.142
  • Veronesi P, et al. Microwave assisted synthesis of Si-modified Mn25FexNi25Cu(50−x) high entropy alloys. Mater Lett. 2016;162:277–280. doi: 10.1016/j.matlet.2015.10.035
  • Veronesi P, et al. Microwave processing of high entropy alloys: a powder metallurgy approach, accepted chemical engineering and processing: process intensification – In Press, Corrected Proof. [cited 2017 March 9]. Available from: https://doi.org/10.1016/j.cep.2017.02.016
  • Colombini E, et al. High entropy alloys obtained by field assisted powder metallurgy route: SPS and microwave heating. Mater Chem Phys, Accepted. [cited 2017 July 1]. Available from: https://doi.org/10.1016/j.matchemphys.2017.06.065
  • Veronesi P, et al. Microwave-Assisted preparation of high entropy alloys. Technologies. 2015;3:182–197. doi: 10.3390/technologies3040182
  • Zhang C, et al. Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloy. Mater Des. 2016;109:425–433. doi: 10.1016/j.matdes.2016.07.073
  • Metaxas AC, Meredith RJ. Industrial microwave heating, IEE power engineering series 4, Published by Peter Peregrinus Ltd., 1983, Section 7.2, London: UK.
  • Cannillo V, et al. Mechanical performance and fracture behaviour of glass-matrix composites reinforced with molybdenum particles. Compos Sci Technol. 2005;65(7–8):1276–1283. doi: 10.1016/j.compscitech.2004.12.035
  • Peng Y, Miao H, Pen Z. Development of TiCN-based cermets: mechanical properties and wear mechanism. Int J Refract Met H. 2013;39:78–89. doi: 10.1016/j.ijrmhm.2012.07.001
  • Rogal L, et al. Effect of SiC nano-particles on microstrucutre and mechanical properties of the CoCrFeMnNi high entropy alloy. J Alloys Compd. 2017;708:344–352. doi: 10.1016/j.jallcom.2017.02.274
  • Penchal Reddya M, et al. Structural and mechanical properties of microwave sintered alsingle bondNi50Ti50 composites. J Sci: Adv Mater Dev. 2016;1(3):362–366.
  • Habibur Rahman M, Mamun Al Rashed HM. Characterization of silicon carbide reinforced aluminum matrix composites. Procedia Eng. 2014;90:103–109. doi: 10.1016/j.proeng.2014.11.821
  • MCColm IJ. Ceramic science for materials technologists. London: Leonard Hill; 1983, p. 239–423.
  • Bodukuria AK, et al. Fabrication of Al–SiC–B4C metal matrix composite by powder metallurgy technique and evaluating mechanical properties. Perspect Sci. 2016;8 :428–431. doi: 10.1016/j.pisc.2016.04.096
  • Tishchenko IY, Ilchenko OO, Kuzema PO. TGA-DSC-MS analysis of silicon carbide and of its carbon-silica precursor, chemistry. Phys Technol Surf. 2015;6 (2):216–223.
  • Pan Y, Baptista JL. Chemical instability of silicon carbide in the presence of transition metals. J Ceram Soc. 1996;79(8):2017–2026. doi: 10.1111/j.1151-2916.1996.tb08932.x
  • Negita K. Effective sintering aids for silicon carbide ceramics: reactivities of silicon carbide with various additives. J Am Ceram Soc 1986;69(12):C-308–C-310. doi: 10.1111/j.1151-2916.1986.tb07398.x
  • Tsai K-Y, Tsai M-H, Yeh J-W. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 2013;61:4887–4897. doi: 10.1016/j.actamat.2013.04.058
  • Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7:1564–1583. doi: 10.1557/JMR.1992.1564
  • Kumar A. Analysis of Si addition on phase formation in AlCoCrCuFeNiSix high entropy alloys. Mater Lett. 2017;188:73–76. doi: 10.1016/j.matlet.2016.10.099
  • Park JS, Landry K, Perepezko JH. Kinetic control of silicon carbide/metal reactions. Mater Sci Eng A. 1999;259(2):279–286. doi: 10.1016/S0921-5093(98)00899-5
  • Chase MWJr., et al. JANAF thermochemical tables. J Phys Chem Ref Data. 1985;14(Suppl. 1):1881–1991
  • Durand-Charre M. Microstructure of steels and cast irons, ed. Springer Berlin Heidelberg (2003) Appendices 22–8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.