716
Views
26
CrossRef citations to date
0
Altmetric
Special theme block on high entropy alloys, guest edited by Paula Alvaredo Olmos, Universidad Carlos III de Madrid, Spain, and Sheng Guo, Chalmers University, Gothenburg, Sweden

Microstructures and properties of CoCrCuFeNiMox high-entropy alloys fabricated by mechanical alloying and spark plasma sintering

, , , , &
Pages 115-122 | Received 30 Aug 2017, Accepted 06 Dec 2017, Published online: 23 Dec 2017

References

  • Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6(5):299–303. doi: 10.1002/adem.200300567
  • Senkov ON, Miller JD, Miracle DB, et al. Accelerated exploration of multi-principal element alloys with solid solution phases. Nat Commun. 2015;6:6529. doi: 10.1038/ncomms7529
  • Ye YF, Wang Q, Lu J, et al. High-entropy alloy: challenges and prospects. Mater Today. 2016;19(6):349–362. doi: 10.1016/j.mattod.2015.11.026
  • Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448–511. doi: 10.1016/j.actamat.2016.08.081
  • Pickering EJ, Jones NG. High-entropy alloys: a critical assessment of their founding principles and future prospects. Int Mater Rev. 2016;61(3):183–202. doi: 10.1080/09506608.2016.1180020
  • Guo S. Phase selection rules for cast high entropy alloys: an overview. Mater Sci Technol. 2015;31(10):1223–1230. doi: 10.1179/1743284715Y.0000000018
  • Eißmann N, Klöden B, Weißgärber T, et al. High-entropy alloy CoCrFeMnNi produced by powder metallurgy. Powder Metall. 2017;60(3):184–197. doi: 10.1080/00325899.2017.1318480
  • Li P, Wang A, Liu CT. A ductile high entropy alloy with attractive magnetic properties. J Alloys Compd. 2017;694:55–60. doi: 10.1016/j.jallcom.2016.09.186
  • Li J, Jia W, Wang J, et al. Enhanced mechanical properties of a CoCrFeNi high entropy alloy by supercooling method. Mater Des. 2016;95:183–187. doi: 10.1016/j.matdes.2016.01.112
  • Wang Z, Wu M, Cai Z, et al. Effect of Ti content on the microstructure and mechanical behavior of (Fe36Ni18Mn33Al13)100-xTix high entropy alloys. Intermetallics. 2016;75:79–87. doi: 10.1016/j.intermet.2016.06.001
  • Mridha S, Samal S, Khan PY, et al. Processing and consolidation of nanocrystalline Cu-Zn-Ti-Fe-Cr high-entropy alloys via mechanical alloying. Metall Mater Trans A. 2013;44(10):4532–4541. doi: 10.1007/s11661-013-1824-6
  • Maulik O, Kumar D, Kumar S, et al. Structural evolution of spark plasma sintered AlFeCuCrMg x (x = 0, 0.5, 1, 1.7) high entropy alloys. Intermetallics. 2016;77:46–56. doi: 10.1016/j.intermet.2016.07.001
  • Joo SH, Kato H, Jang MJ, et al. Structure and properties of ultrafine-grained CoCrFeMnNi high-entropy alloys produced by mechanical alloying and spark plasma sintering. J Alloys Compd. 2017;698:591–604. doi: 10.1016/j.jallcom.2016.12.010
  • Praveen S, Murty BS, Kottada RS. Phase evolution and densification behavior of nanocrystalline multicomponent high entropy alloys during spark plasma sintering. JOM. 2013;65(12):1797–1804. doi: 10.1007/s11837-013-0759-0
  • Moravcik I, Cizek J, Zapletal J, et al. Microstructure and mechanical properties of Ni1,5Co1,5CrFeTi0,5 high entropy alloy fabricated by mechanical alloying and spark plasma sintering. Mater Des. 2017;119:141–150. doi: 10.1016/j.matdes.2017.01.036
  • Rogal L. Semi-solid processing of the CoCrCuFeNi high entropy alloy. Mater Des. 2017;119:406–416. doi: 10.1016/j.matdes.2017.01.082
  • Wang WL, Hu L, Luo SB, et al. Liquid phase separation and rapid dendritic growth of high-entropy CoCrCuFeNi alloy. Intermetallics. 2016;77:41–45. doi: 10.1016/j.intermet.2016.07.003
  • Hsu YJ, Chiang WC, Wu JK. Corrosion behavior of FeCoNiCrCu x high-entropy alloys in 3.5% sodium chloride solution. Mater Chem Phys. 2005;92(1):112–117. doi: 10.1016/j.matchemphys.2005.01.001
  • He F, Wang Z, Zhu M, et al. The phase stability of Ni 2 CrFeMo x multi-principal-component alloys with medium configurational entropy. Mater Des. 2015;85:1–6. doi: 10.1016/j.matdes.2015.06.174
  • Liu WH, Lu ZP, He JY, et al. Ductile CoCrFeNiMo x high entropy alloys strengthened by hard intermetallic phases. Acta Mater. 2016;116:332–342. doi: 10.1016/j.actamat.2016.06.063
  • Ma SG, Zhang Y. Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy. Mater Sci Eng A. 2012;532:480–486. doi: 10.1016/j.msea.2011.10.110
  • Tsai CW, Chen YL, Tsai MH, et al. Deformation and annealing behaviors of high-entropy alloy Al 0.5 CoCrCuFeNi. J Alloys Compd. 2009;486(1):427–435. doi: 10.1016/j.jallcom.2009.06.182
  • Takeuchi A, Inoue A. Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys. Mater Trans, JIM. 2000;41(11):1372–1378. doi: 10.2320/matertrans1989.41.1372
  • Takeuchi A, Inoue A. Calculations of amorphous-forming composition range for ternary alloy systems and analyses of stabilization of amorphous phase and amorphous-forming ability. Mater Trans. 2001;42(7):1435–1444. doi: 10.2320/matertrans.42.1435
  • Shun TT, Chang LY, Shiu MH. Age-hardening of the CoCrFeNiMo 0.85 high-entropy alloy. Mater Charact. 2013;81:92–96. doi: 10.1016/j.matchar.2013.04.012
  • Stepanov ND, Shaysultanov DG, Salishchev GA, et al. Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiVx high entropy alloys. J Alloys Compd. 2015;628:170–185. doi: 10.1016/j.jallcom.2014.12.157
  • Toda-Caraballo I, Rivera-Díaz-del-Castillo PEJ. Modelling solid solution hardening in high entropy alloys. Acta Mater. 2015;85:14–23. doi: 10.1016/j.actamat.2014.11.014
  • Yu PF, Zhang LJ, Cheng H, et al. The high-entropy alloys with high hardness and soft magnetic property prepared by mechanical alloying and high-pressure sintering. Intermetallics. 2016;70:82–87. doi: 10.1016/j.intermet.2015.11.005
  • Shun TT, Chang LY, Shiu MH. Microstructure and mechanical properties of multiprincipal component CoCrFeNiMo x alloys. Mater Charact. 2012;70:63–67. doi: 10.1016/j.matchar.2012.05.005
  • Cai B, Liu B, Kabra S, et al. Deformation mechanisms of Mo alloyed FeCoCrNi high entropy alloy: in situ neutron diffraction. Acta Mater. 2017;127:471–480. doi: 10.1016/j.actamat.2017.01.034
  • Zhu JM, Zhang HF, Fu HM, et al. Microstructures and compressive properties of multicomponent AlCoCrCuFeNiMo x alloys. J Alloys Compd. 2010;497(1):52–56. doi: 10.1016/j.jallcom.2010.03.074
  • Zhu JM, Fu HM, Zhang HF, et al. Microstructures and compressive properties of multicomponent AlCoCrFeNiMo x alloys. Mater Sci Eng A. 2010;527(26):6975–6979. doi: 10.1016/j.msea.2010.07.028

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.