214
Views
5
CrossRef citations to date
0
Altmetric
Invited keynote papers from EuroPM2017, Milan

Role of beta-stabilizing elements on the microstructure and mechanical properties evolution of modified PM Ti surfaces designed for biomedical applications

, ORCID Icon, , , ORCID Icon, & ORCID Icon show all
Pages 90-99 | Received 23 Oct 2017, Accepted 23 Dec 2017, Published online: 24 Jan 2018

References

  • Niinomi M. Mechanical biocompatibilities of titanium alloys for biomedical applications. J Mech Behav Biomed Mater. 2008;1(1):30–42. doi: 10.1016/j.jmbbm.2007.07.001
  • Hussein M, Mohammed A, Al-Aqeeli N. Wear characteristics of metallic biomaterials: a review. Materials (Basel). 2015;8(5):2749–2768. doi: 10.3390/ma8052749
  • Geetha M, Singh AK, Asokamani R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants – a review. Prog Mater Sci. 2009;54(3):397–425. doi: 10.1016/j.pmatsci.2008.06.004
  • Zhu L, Zhang Q, Chen Z, et al. Measurement of interdiffusion and impurity diffusion coefficients in the bcc phase of the Ti–X (X = Cr, Hf, Mo, Nb, V, Zr) binary systems using diffusion multiples. J Mater Sci. 2017;52(6):3255–3268. doi: 10.1007/s10853-016-0614-0
  • Liu X, Chu PK, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R Reports. 2004;47(3–4):49–121. doi: 10.1016/j.mser.2004.11.001
  • Goriainov V, Cook R, Latham JM, et al. Bone and metal: An orthopaedic perspective on osseointegration of metals. Acta Biomater. 2014;10(10):4043–4057. doi: 10.1016/j.actbio.2014.06.004
  • Sharma B, Kumar S, Ameyama K. Microstructure and properties of beta Ti-Nb alloy prepared by powder metallurgy route using titanium hydride powder. J Alloys Compd. 2016;656:978–986. doi: 10.1016/j.jallcom.2015.10.053
  • Li Y, Yang C, Zhao H, et al. New developments of Ti-based alloys for biomedical applications. Materials (Basel). 2014;7(3):1709–1800. doi: 10.3390/ma7031709
  • Fan A, Ma Y, Yang R, et al. Friction and wear behaviors of Mo-N modified Ti6Al4V alloy in Hanks’ solution. Surf Coatings Technol. 2013;228:S419–S423. doi: 10.1016/j.surfcoat.2012.05.046
  • Wilson JCA, Ban S, Housden J, et al. On the response of Ti–6Al–4V and Ti–6Al–7Nb alloys to a Nitron-100 treatment. Surf Coat Technol. 2014;260:335–346. doi: 10.1016/j.surfcoat.2014.11.034
  • Ng KW, Man HC, Cheng FT, et al. Laser cladding of copper with molybdenum for wear resistance enhancement in electrical contacts. Appl Surf Sci. 2007;253(14):6236–6241. doi: 10.1016/j.apsusc.2007.01.086
  • Viteri D, Barandika G, Bayo R, et al. Development of Ti–C–N coatings with improved tribological behavior and antibacterial properties. J Mech Behav Biomed Mater. 2016;55:75–86. doi: 10.1016/j.jmbbm.2015.10.020
  • Tsipas SA, Gordo E, Jiménez-Morales A. Oxidation and corrosion protection by halide treatment of powder metallurgy Ti and Ti6Al4V alloy. Corros Sci. 2014;88:263–274. doi: 10.1016/j.corsci.2014.07.037
  • Almeida A, Gupta D, Loable C, et al. Laser-assisted synthesis of Ti-Mo alloys for biomedical applications. Mater Sci Eng C. 2012;32(5):1190–1195. doi: 10.1016/j.msec.2012.03.007
  • Mandracci P, Mussano F, Rivolo P, et al. Surface treatments and functional coatings for biocompatibility improvement and bacterial adhesion reduction in dental implantology. Coatings. 2016. 6(1):7.
  • Sullivan SJL, Topoleski LDT. Surface modifications for improved wear performance in artificial joints: a review. Miner Met Mater Soc. 2015;67(11):2502–2517. doi: 10.1007/s11837-015-1543-0
  • Mohammed MT, Khan ZA, Siddiquee AN. Surface modifications of titanium materials for developing corrosion behavior in human body environment: a review. Procedia Mater Sci. 2014;6(Icmpc):1610–1618. doi: 10.1016/j.mspro.2014.07.144
  • Bolzoni L, Esteban PG, Ruiz-Navas EM, et al. Mechanical behaviour of pressed and sintered titanium alloys obtained from master alloy addition powders. J Mech Behav Biomed Mater. 2012;15:33–45. doi: 10.1016/j.jmbbm.2012.05.019
  • Carman A, Zhang LC, Ivasishin OM, et al. Role of alloying elements in microstructure evolution and alloying elements behaviour during sintering of a near-β titanium alloy. Mater Sci Eng A. 2011;528(3):1686–1693. doi: 10.1016/j.msea.2010.11.004
  • Ureña J, Mendoza C, Ferrari B, et al. Surface modification of powder metallurgy titanium by colloidal techniques and diffusion processes for biomedical applications. Adv Eng Mater. 2017;19(6):1–8. doi: 10.1002/adem.201600207
  • Tsipas SA, Gordo E. Molybdeno-aluminizing of powder metallurgy and wrought Ti and Ti-6Al-4V alloys by pack cementation process. Mater Charact. 2016;118:494–504. doi: 10.1016/j.matchar.2016.06.028
  • Sidambe AT. Biocompatibility of advanced manufactured titanium implants – a review. Materials (Basel). 2014;7:8168–8188. doi: 10.3390/ma7128168
  • Divinski S, Hisker F, Klinkenberg C, et al. Niobium and titanium diffusion in the high niobium-containing Ti-54Al-10Nb alloy. Intermetallics. 2006;14(7):792–799. doi: 10.1016/j.intermet.2005.12.007
  • Cardoso FF, Ferrandini PL, Lopes ESN, et al. Ti-Mo alloys employed as biomaterials: effects of composition and aging heat treatment on microstructure and mechanical behavior. J Mech Behav Biomed Mater. 2014;32:31–38. doi: 10.1016/j.jmbbm.2013.11.021
  • Mi-Kyung H, Jai-Youl K, Moon-Jin H, et al. Effect of Nb on the microstructure, mechanical properties, corrosion behavior, and cytotoxicity of Ti-Nb alloys. Materials (Basel). 2015;8:5986–6003. doi: 10.3390/ma8095287
  • Peng XM, Xia CQ, Liu YY, et al. Surface molybdenizing on titanium by halide-activated pack cementation. Surf Coatings Technol. 2009;203(20–21):3306–3311. doi: 10.1016/j.surfcoat.2009.04.008
  • Li J, Xia C, Gu Y. Effect of temperature on microstructure of molybdenum diffusion coating on titanium substrate. J Cent South Univ Technol. 2004;11(1):15–18. doi: 10.1007/s11771-004-0003-8
  • Gong J, Wu J, Guan Z. Examination of the indentation size effect in low-load Vickers hardness testing of ceramics. J Eur Ceram Soc. 1999;19:2625–2631. doi: 10.1016/S0955-2219(99)00043-6
  • Nnamchi PS, Njoku RE, Fasuba OA. Alloy design and property evaluation of Ti-Mo-Nb-Sn alloy for biomedical applications. Niger J Technol. 2013;32(3):410–416.
  • Oliveira NTC, Guastaldi AC. Electrochemical stability and corrosion resistance of Ti-Mo alloys for biomedical applications. Acta Biomater. 2009;5(1):399–405. doi: 10.1016/j.actbio.2008.07.010
  • Matkovic P. Alloy design and property evaluation of new Ti– Cr–Nb alloys. Mater Des. 2012;33:26–30. doi: 10.1016/j.matdes.2011.06.052
  • Neacsu P, Gordin D, Mitran V, et al. In vitro performance assessment of new beta Ti–Mo–Nb alloy compositions. Mater Sci Eng C. 2015;47:105–113. doi: 10.1016/j.msec.2014.11.023
  • Calderon-Moreno JM, Vasilescu C, Drob SI, et al. Microstructural and mechanical properties, surface and electrochemical characterisation of a new Ti-Zr-Nb alloy for implant applications. J Alloys Compd. 2014;612:398–410. doi: 10.1016/j.jallcom.2014.05.159
  • Mendes MWD, Ágreda CG, Bressiani AHA, et al. A new titanium based alloy Ti–27Nb–13Zr produced by powder metallurgy with biomimetic coating for use as a biomaterial. Mater Sci Eng C. 2016;63:671–677. doi: 10.1016/j.msec.2016.03.052

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.