660
Views
20
CrossRef citations to date
0
Altmetric
Special theme block on high entropy alloys, guest edited by Paula Alvaredo Olmos, Universidad Carlos III de Madrid, Spain, and Sheng Guo, Chalmers University, Gothenburg, Sweden

Sintering mechanism of CoCrFeMnNi high-entropy alloy powders

, &
Pages 131-138 | Received 26 Oct 2017, Accepted 22 Jan 2018, Published online: 15 Feb 2018

References

  • Cantor B, Chang ITH, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A. 2004;375–377:213–218. doi: 10.1016/j.msea.2003.10.257
  • Yeh J-W, Chen S-K, Lin S-J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6(5):299–303. doi: 10.1002/adem.200300567
  • Yeh J-W. Recent progress in high-entropy alloys. Ann Chim Sci Mat. 2006;31:633–648. doi: 10.3166/acsm.31.633-648
  • Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448–511. doi: 10.1016/j.actamat.2016.08.081
  • Zhang Y, Zuo TT, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci. 2014;61:1–93. doi: 10.1016/j.pmatsci.2013.10.001
  • Murty BS, Yeh JW, Ranganathan S. High entropy alloys. 1st ed. London: Butterworth-Heinemann; 2014.
  • Guo S, Liu CT. Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Prog Nat Sci Mater Int. 2011;21:433–446. doi: 10.1016/S1002-0071(12)60080-X
  • Zhang Z, Mao MM, Wang J, et al. Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi. Nat Commun. 2015;6:10143. doi: 10.1038/ncomms10143
  • Zhang Y, Zuo T, Cheng Y, et al. High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Sci Rep. 2013;3:1455. doi: 10.1038/srep01455
  • Li X, Tian F, Schönecker S, et al. Ab initio-predicted micro-mechanical performance of refractory high-entropy alloys. Sci Rep. 2015;5:12334. doi: 10.1038/srep12334
  • Li Z, Pradeep KG, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature. 2016;534:227–230. doi: 10.1038/nature17981
  • Zou Y, Ma H, Spolenak R. Ultrastrong ductile and stable high-entropy alloys at small scales. Nat Commun. 2015;6:7748. doi: 10.1038/ncomms8748
  • Singh S, Wanderka N, Murty BS, et al. Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy. Acta Mater. 2011;59:182–190. doi: 10.1016/j.actamat.2010.09.023
  • Pradeep KG, Wanderka N, Choi P, et al. Atomic-scale compositional characterization of a nanocrystalline AlCrCuFeNiZn high-entropy alloy using atom probe tomography. Acta Mater. 2013;61:4696–4706. doi: 10.1016/j.actamat.2013.04.059
  • Senkov ON, Miller JD, Miracle DB, et al. Accelerated exploration of multi-principal element alloys with solid solution phases. Nat Commun. 2015;6:6529. doi: 10.1038/ncomms7529
  • Liu WH, Wu Y, He JY, et al. Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy. Scripta Mater. 2013;68:526–529. doi: 10.1016/j.scriptamat.2012.12.002
  • Zaddach AJ, Niu C, Koch CC, et al. Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy. J Mater Met Mater Sci. 2013;65:1780–1789. doi: 10.1007/s11837-013-0771-4
  • Laurent M, Akhatova A, Perrière L, et al. Insights into the phase diagram of the CrMnFeCoNi high entropy alloy. Acta Mater. 2015;88:355–365. doi: 10.1016/j.actamat.2015.01.068
  • Bhattacharjee PP, Sathiaraj GD, Zaid M, et al. Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy. J Alloy Compd. 2014;587:544–552. doi: 10.1016/j.jallcom.2013.10.237
  • Sathiaraj GD, Ahmed MZ, Bhattacharjee PP. Microstructure and texture of heavily cold-rolled and annealed fcc equiatomic medium to high entropy alloys. J Alloy Compd. 2016;664:109–119. doi: 10.1016/j.jallcom.2015.12.172
  • Laplanche G, Gadaud P, Horst O, et al. Temperature dependencies of the elastic moduli and thermal expansion coefficient of an equiatomic single-phase CoCrFeMnNi high-entropy alloy. J Alloy Compd. 2015;623:348–353. doi: 10.1016/j.jallcom.2014.11.061
  • Guo S, Ng C, Liu CT. Anomalous solidification microstructures in Co-free AlxCrCuFeNi2 high-entropy alloys. J Alloys Compd. 2013;557:77–81. doi: 10.1016/j.jallcom.2013.01.007
  • Ye GX, Wu B, Zhang CH, et al. Study of solidification and microstructures of multi-principal high-entropy alloy FeCoNiCrMn by using experiments and simulation. Adv Mater Res. 2012;399:1746–1749.
  • Guo S, Ng C, Wang Z, et al. Solid solutioning in equiatomic alloys: limit set by topological instability. J Alloy Compd. 2014;583:410–413. doi: 10.1016/j.jallcom.2013.08.213
  • Praveen S, Murty BS, Kottada RS. Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys. Mater Sci Eng A. 2012;534:83–89. doi: 10.1016/j.msea.2011.11.044
  • Fu Z, Chen W, Xiao H, et al. Fabrication and properties of nanocrystalline Co0.5FeNiCrTi0.5 high entropy alloy by MA-SPS technique. Mater Des. 2013;44:535–539. doi: 10.1016/j.matdes.2012.08.048
  • Yuhu F, Yunpeng Z, Hongyan G, et al. Alcrnifexmo0.2CoCu high entropy alloys prepared by powder metallurgy. Rare Met Mater Eng. 2013;42:1127–1129. doi: 10.1016/S1875-5372(13)60074-0
  • Ji W, Wang W, Wang H, et al. Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering. Intermetallics. 2015;56:24–27. doi: 10.1016/j.intermet.2014.08.008
  • Varalakshmi S, Kamaraj M, Murty BS. Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying. J Alloy Compd. 2008;460:253–257. doi: 10.1016/j.jallcom.2007.05.104
  • Sriharitha R, Murty BS, Kottada RS. Phase formation in mechanically alloyed AlxCoCrCuFeNi (x = 0.45, 1, 2.5, 5 mol) high entropy alloys. Intermetallics. 2013;32:119–126. doi: 10.1016/j.intermet.2012.08.015
  • Qiu XW. Microstructure and properties of AlCrFeNiCoCu high entropy alloy prepared by powder metallurgy. J Alloy Compd. 2013;555:246–249. doi: 10.1016/j.jallcom.2012.12.071
  • Praveen S, Basu J, Kashyap S, et al. Exceptional resistance to grain growth in nanocrystalline CoCrFeNi high entropy alloy at high homologous temperatures. J Alloy Compd. 2016;662:361–367. doi: 10.1016/j.jallcom.2015.12.020
  • Lu Y, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: eutectic high-entropy alloys. Sci Rep. 2014;4:6200. doi: 10.1038/srep06200
  • Tsai KY, Tsai MH, Yeh JW. Sluggish diffusion in CoCrFeMnNi high entropy alloys. Acta Mater. 2013;61:4887–4897. doi: 10.1016/j.actamat.2013.04.058
  • Nadine E, Klöden B, Weißgärber T, et al. High-entropy alloy CoCrFeMnNi produced by powder metallurgy. Powder Metall. 2017;60:3:1–14.
  • Liu Y, Wang J, Fang Q, et al. Preparation of superfine-grained high entropy alloy by spark plasma sintering gas atomized powder. Intermetallics. 2016;68:16–22. doi: 10.1016/j.intermet.2015.08.012
  • Praveen S, Murty BS, Kottada RS. Phase evolution and densification behavior of nanocrystalline multicomponent high entropy alloys during spark plasma sintering. JOM. 2013;65:1797–1804. doi: 10.1007/s11837-013-0759-0
  • Ji W, Fu Z, Wang W, et al. Mechanical alloying synthesis and spark plasma sintering consolidation of CoCrFeNiAl high-entropy alloy. J Alloy Compd. 2014;589:61–66. doi: 10.1016/j.jallcom.2013.11.146
  • Panigrahi BB, Godkhindi MM, Das K, et al. Sintering mechanisms of attrition milled titanium nano powder. J Mater Res. 2005;20(4):827–836. doi: 10.1557/JMR.2005.0116
  • Panigrahi BB, Godkhindi MM, Das K, et al. Sintering kinetics of micrometric titanium powder. Mater Sci Eng A. 2005;396(1):255–262. doi: 10.1016/j.msea.2005.01.016
  • Panigrahi BB. Evaluation of dimensional changes from as received dilatometric sintering plot. Mater Sci Technol. 2007;23(1):103–107. doi: 10.1179/174328407X158497
  • Johnson DL. New method of obtaining volume, grain-boundary, and surface diffusion coefficients from sintering data. J Appl Phys. 1969;40:192–200. doi: 10.1063/1.1657030
  • Żenkiewicz M. Methods for calculation of surface free energy of solids. J Achiev Mater Manuf Eng. 2007;24:137–145.
  • Ashby MF. A first report on sintering diagrams. Acta Mater. 1974;22:275–289. doi: 10.1016/0001-6160(74)90167-9
  • German RM. Sintering theory & practice. New York: John Wiley & sons, inc.; 1996.
  • Brandes EA, Smithells GB. Metal reference book. 6th ed. Oxford, UK: Butterworths; 1983.
  • Neumann G, Tuijn C. Self-diffusion and impurity diffusion in pure metals: handbook of experimental data. 1st ed. Oxford, UK: Elsevier; 2009.
  • Shewmon P. Diffusion in solids. 2nd ed. Cham, Switzerland: John Wiley and Sons Inc.; 1989.
  • Divinski SV, Geise J, Rabkin E, et al. Grain boundary self-diffusion in α-iron of different purity: effect of dislocation enhanced diffusion. Zeitschrift für Metallkunde. 2004;95(10):945–952. doi: 10.3139/146.018036
  • James DW, Leak GM. Grain boundary diffusion of iron, cobalt and nickel in alpha-iron and of iron in gamma-iron. Philosophical Magazine. 1965;12(117):491–503. doi: 10.1080/14786436508218895

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.