203
Views
8
CrossRef citations to date
0
Altmetric
Regular papers

Distinguishing the influence of aluminium and vanadium additions on microstructural evolution and densification behaviour during the sintering of ti6Al, ti4V and ti6al4v

, &
Pages 301-312 | Received 09 Mar 2018, Accepted 14 Jul 2018, Published online: 22 Jul 2018

References

  • Wang H, Fang ZZ, Sun P. A Critical Review of the Mechanical Properties of Powder Metallurgy Titanium. International Journal of Powder Metallurgy. 2010;46(5):45–57.
  • Robertson IM, Schaffer GB. Review of densification of titanium based powder systems in press and sinter processing. Powder Metall. 2010;53(2):146–162. doi: 10.1179/174329009X434293
  • Froes FH, Gungor MH, Imam MA. Cost-affordable titanium: the component fabrication perspective. JOM. 2007;59:28–31. doi: 10.1007/s11837-007-0074-8
  • McCracken CG, Motchenbacher C, Barbis DP. Review of Titanium Powder Production Methods. Int J Powder Metall. 2010;46(5):19–26.
  • P. Kumar and K.S. Ravi Chandran. Strength–Ductility Property Maps of Powder Metallurgy (PM) Ti-6Al-4V Alloy: A Critical Review of Processing-Structure-Property Relationships. Met Mater Trans A. 2017;48A;2301-2319. doi: 10.1007/s11661-017-4009-x
  • Paramore JD, Fang ZZ, Sun P, et al. A powder metallurgy method for manufacturing Ti-6Al-4V with wrought-like microstructures and mechanical properties via hydrogen sintering and phase transformation (HSPT). Scripta Materialia. 2015;107:103–106. doi: 10.1016/j.scriptamat.2015.05.032
  • Bolzoni L, Esteban PG, Ruiz-Navas EM, et al. Influence of powder characteristics on sintering behaviour and properties of PM Ti alloys produced from prealloyed powder and master alloy. Powder Metall. 2011;54(4):543–550. doi: 10.1179/003258910X12827272082623
  • Smugeresky JE, Dawson DB. New titanium alloys for blended elemental powder processing. Powder Technol. 1981;30:87–94. doi: 10.1016/0032-5910(81)85030-9
  • Fujita T, Ogawa A, Ouchi C, et al. Mater Sci Eng. 1996;A213:149–153.
  • Ivasishin OM, Anokhin VM, Demidik AN, et al. Cost-Effective Blended Elemental Powder Metallurgy of Titanium Alloys for Transportation Application. Key Eng Mater. 2000;188:55–62. doi: 10.4028/www.scientific.net/KEM.188.55
  • Ivasishin OM, Savvakin DG, Moxson VS, et al. Mater Technol Adv Perf Mater. 2002;17(1):20–37.
  • Bolzoni L, Esteban PG, Ruiz-Navas EM, et al. Mechanical behaviour of pressed and sintered titanium alloys obtained from master alloy addition powders. J Mechan Behav Biomed Mater. 2012;15:33–45. doi: 10.1016/j.jmbbm.2012.05.019
  • Bolzoni L, Esteban PG, Ruiz-Navas EM, et al. Mechanical behaviour of pressed and sintered titanium alloys obtained from prealloyed and blended elemental powders. J Mechan Behav Biomed Mater. 2012;14:29–38. doi: 10.1016/j.jmbbm.2012.05.013
  • Ivasishin OM, Eylon D, Bondarchuk VI, et al. Diffusion during Powder Metallurgy Synthesis of Titanium Alloys. Defect Diffusion Forum. 2008;277:177–185. doi: 10.4028/www.scientific.net/DDF.277.177
  • Steedman G, Corbin SF. Determining sintering mechanisms and rate ofin situ homogenisation during master alloy sintering of Ti6Al4V. Powder Metall. 2015;58(1):67–80. doi: 10.1179/1743290114Y.0000000110
  • O’Flynn J, Corbin SF. The influence of iron powder size on pore formation, densification and homogenization during blended elemental sintering of Ti–2.5Fe. J Alloy Compound. 2015;618:437–448. doi: 10.1016/j.jallcom.2014.08.134
  • Malinov S, Guo Z, Sha W, et al. Differential scanning calorimetry study and computer modeling of β ⇒α phase transformation in a Ti-6Al-4V alloy. Met Mater Trans A. 2001;32A:879–887. doi: 10.1007/s11661-001-0345-x
  • Yamamoto O, Alvarez K, Kikuchi T, et al. Fabrication and characterization of oxygen-diffused titanium for biomedical applications. Acta Biomater. 2009;5:3605–3615. doi: 10.1016/j.actbio.2009.06.011
  • Malinov S, Sha W, Voon CS. In situ high temperature microscopy study of the surface oxidation and phase transformations in titanium alloys. J Microsc. 2002;207:163–168. doi: 10.1046/j.1365-2818.2002.01055.x
  • Lu X, Qiu A, Wu G, et al. Thermodynamic Modeling of the Al-Ti-V Ternary System. Met Mater Trans A. 2014;45A:4155–4164. doi: 10.1007/s11661-014-2317-y
  • Savvakin DG, Carman A, Ivasishin OM, et al. Effect of Iron Content on Sintering Behavior of Ti-V-Fe-Al Near-β Titanium Alloy. Met Mater Trans A. 2012;43A:716–723. doi: 10.1007/s11661-011-0875-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.