15,470
Views
148
CrossRef citations to date
0
Altmetric
Special theme block on high entropy alloys, guest edited by Paula Alvaredo Olmos, Universidad Carlos III de Madrid, Spain, and Sheng Guo, Chalmers University, Gothenburg, Sweden

High-entropy alloys fabricated via powder metallurgy. A critical review

ORCID Icon, & ORCID Icon
Pages 84-114 | Received 29 Dec 2018, Accepted 11 Feb 2019, Published online: 17 Mar 2019

References

  • Radetzki M. Seven thousand years in the service of humanity—the history of copper, the red metal. Resour Policy. 2009 Dec;34(4):176–184.
  • Kim Y-W. Intermetallic alloys based on gamma titanium aluminide. JOM. 1989 Jul;41(7):24–30.
  • Cantor B, Chang ITH, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A. 2004 Jul;375–377:213–218.
  • Yeh J-W, Chen S-K, Lin S-J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design Concepts and Outcomes. Adv Eng Mater. 2004 May;6(5):299–303.
  • Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater. 2017 Jan;122:448–511.
  • Yeh J-W. Recent progress in high-entropy alloys. Ann Chim Sci des Matériaux. 2006 Dec;31(6):633–648.
  • Tsai M-H, Yeh J-W. High-entropy alloys: a critical review. Mater Res Lett. 2014;2(3):107–123.
  • Ye YF, Wang Q, Lu J, et al. High-entropy alloy: challenges and prospects. Mater Today. 2016;19(6):349–362.
  • Pickering EJ, Jones NG. High-entropy alloys: a critical assessment of their founding principles and future prospects. Int Mater Rev. 2016;61(3):183–202.
  • Cantor B. Multicomponent and high entropy alloys. Entropy. 2014;16(9):4749–4768.
  • Tsai M-H. Physical properties of high entropy alloys. Entropy. 2013;15(12):5338–5345.
  • Zhang Y, Zuo T, Cheng Y, et al. High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Sci Rep. 2013 Mar;3:1455.
  • Shi Y, Yang B, Liaw PK. Corrosion-resistant high-entropy alloys: a review. Metals. 2017;7(2):43.
  • Qiu Y, Gibson MA, Fraser HL, et al. Corrosion characteristics of high entropy alloys. Mater Sci Technol. 2015;31(10):1235–1243.
  • John Mary S, Nagalakshmi R, Rajendran S, et al. High entropy alloys and corrosion resistance. A bird’s eye view. Eur Chem Bull. 2014;3(12):1031–1035.
  • Miracle DB, Miller JD, Senkov ON, et al. Exploration and development of high entropy alloys for structural applications. Entropy. 2014;16(1):494–525.
  • Miracle DB. Critical assessment 14: high entropy alloys and their development as structural materials. Mater Sci Technol. 2015;31(10):1142–1147.
  • Zhang Y, Zuo TT, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci. 2014;61:1–93.
  • Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science. 2014;345(6201):1153–1158.
  • Diao HY, Feng R, Dahmen KA, et al. Fundamental deformation behavior in high-entropy alloys: an overview. Curr Opin Solid State Mater Sci. 2017 Oct;21(5):252–266.
  • Li W, Liaw PK, Gao Y. Fracture resistance of high entropy alloys: a review. Intermetallics. 2018;99:69–83.
  • Murty BS, Yeh JW, Ranganathan S. High-entropy alloys. Amsterdam: Elsevier Science; 2014.
  • Gao MC, Yeh J-W, Liaw PK, et al., Eds. High-entropy alloys. Cham: Springer International Publishing; 2016.
  • Varalakshmi S, Kamaraj M, Murty BS. Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying. J Alloys Compd. 2008 Jul;460(1–2):253–257.
  • Zhang KB, Fu ZY, Zhang J, et al. Nanocrystalline CoCrFeNiCuAl high-entropy solid solution synthesized by mechanical alloying. J Alloys Compd. 2009;485(1):L31–L34.
  • Chen Y-L, Hu Y-H, Tsai C-W, et al. Alloying behavior of binary to octonary alloys based on Cu–Ni–Al–Co–Cr–Fe–Ti–Mo during mechanical alloying. J Alloys Compd. 2009 May;477(1–2):696–705.
  • Koch CC. Nanocrystalline high-entropy alloys. J Mater Res. 2017;32(18):3435–3444.
  • Kumar A, Gupta M. An Insight into Evolution of light weight high entropy alloys: a review. Metals. 2016;6(9):199.
  • Senkov ON, Wilks GB, Miracle DB, et al. Refractory high-entropy alloys. Intermetallics. 2010 Sep;18(9):1758–1765.
  • Yeh J-W. Alloy design strategies and future Trends in high-entropy alloys. JOM. 2013;65(12):1759–1771.
  • Milligan GW, Cooper MC. A study of the comparability of external criteria for hierarchical cluster analysis. Multivariate Behav Res. 1986;21(4):441–458.
  • Qiu X-W. Microstructure and properties of AlCrFeNiCoCu high entropy alloy prepared by powder metallurgy. J Alloys Compd. 2013 Apr;555:246–249.
  • Yuhu F, Yunpeng Z, Hongyan G, et al. Alnicrfexmo0.2CoCu high entropy alloys prepared by powder metallurgy. Rare Met Mater Eng. 2013 Jun;42(6):1127–1129.
  • Fang S, Chen W, Fu Z. Microstructure and mechanical properties of twinned Al0.5CrFeNiCo0.3C0.2 high entropy alloy processed by mechanical alloying and spark plasma sintering. Mater Des. 2014;54:973–979.
  • babu CS, Sivaprasad K, Muthupandi V, et al. Characterization of nanocrystalline AlCoCrCuNiFeZn high entropy alloy produced by mechanical alloying. Procedia Mater Sci. 2014 Jan;5:1020–1026.
  • Fu Z, Chen W, Chen Z, et al. Influence of Ti addition and sintering method on microstructure and mechanical behavior of a medium-entropy Al0.6CoNiFe alloy. Mater Sci Eng A. 2014 Dec;619:137–145.
  • Zhang H, Pan Y, He Y, et al. Microstructure and properties of 6FeNiCoSiCrAlTi high-entropy alloy coating prepared by laser cladding. Appl Surf Sci. 2011;257(6):2259–2263.
  • Shaofeng Y, Yan Z, Jialin C, et al. Microstructure and properties of Al0.4FeCrNiCo1.5Ti0.3 high entropy alloy prepared by MA-HP technique. Rare Met Mater Eng. 2014 Dec;43(12):2948–2952.
  • Ji W, Fu Z, Wang W, et al. Mechanical alloying synthesis and spark plasma sintering consolidation of CoCrFeNiAl high-entropy alloy. J Alloys Compd. 2014;589:61–66.
  • Zhu G, Liu Y, Ye J. Fabrication and properties of Ti(C,N)-based cermets with multi-component AlCoCrFeNi high-entropy alloys binder. Mater Lett. 2013 Dec;113:80–82.
  • Chen Z, Chen W, Wu B, et al. Effects of Co and Ti on microstructure and mechanical behavior of Al0.75FeNiCrCo high entropy alloy prepared by mechanical alloying and spark plasma sintering. Mater Sci Eng A. 2015;648:217–224.
  • Chen Y-L, Hu Y-H, Tsai C-W, et al. Structural evolution during mechanical milling and subsequent annealing of Cu–Ni–Al–Co–Cr–Fe–Ti alloys. Mater Chem Phys. 2009 Dec;118(2–3):354–361.
  • Baldenebro-Lopez FJ, Herrera-Ramírez JM, Arredondo-Rea SP, et al. Simultaneous effect of mechanical alloying and arc-melting processes in the microstructure and hardness of an AlCoFeMoNiTi high-entropy alloy. J Alloys Compd. 2015;643:S250–S255.
  • Sriharitha R, Murty BS, Kottada RS. Phase formation in mechanically alloyed AlxCoCrCuFeNi (x = 0.45, 1, 2.5, 5 mol) high entropy alloys. Intermetallics. 2013;32:119–126.
  • Fu Z, Chen W, Wen H, et al. Effects of Co and sintering method on microstructure and mechanical behavior of a high-entropy Al0.6NiFeCrCo alloy prepared by powder metallurgy. J Alloys Compd. 2015 Oct;646:175–182.
  • Chen W, Fu Z, Fang S, et al. Processing, microstructure and properties of Al0.6CoNiFeTi0.4 high entropy alloy with nanoscale twins. Mater Sci Eng A. 2013 Mar;565:439–444.
  • Zhu G, Liu Y, Ye J. Early high-temperature oxidation behavior of Ti(C,N)-based cermets with multi-component AlCoCrFeNi high-entropy alloy binder. Int J Refract Met Hard Mater. 2014;44:35–41.
  • Ji W, Zhang J, Wang W, et al. Fabrication and properties of TiB2-based cermets by spark plasma sintering with CoCrFeNiTiAl high-entropy alloy as sintering aid. J Eur Ceram Soc. 2015 Mar;35(3):879–886.
  • Veronesi P, Rosa R, Colombini E, et al. Microwave-Assisted Preparation of high entropy alloys. Technologies. 2015 Oct;3(4):182–197.
  • Fu Z, Chen W, Wen H, et al. Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy. Acta Mater. 2016 Apr;107:59–71.
  • Shiratori H, Fujieda T, Yamanaka K, et al. Relationship between the microstructure and mechanical properties of an equiatomic AlCoCrFeNi high-entropy alloy fabricated by selective electron beam melting. Mater Sci Eng A. 2016;656:39–46.
  • Qiu X, Huang C, Wu M, et al. Structure and properties of AlCrFeNiCuTi six principal elements equimolar alloy. J Alloys Compd. 2016 Feb;658:1–5.
  • Zhang KB, Fu ZY, Zhang JY, et al. Microstructure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys. Mater Sci Eng A. 2009 May;508(1–2):214–219.
  • Raphel A, Kumaran S, Kumar KV, et al. Oxidation and corrosion resistance of AlCoCrFeTiHigh entropy alloy. Mater Today Proc. 2017 Jan;4(2):195–202.
  • Wang P, Cheng X, Cai H, et al. Influence of increasing Al concentration on phase, microstructure and mechanical behaviors of Ni1.5CoFeCu1−xAlxV0.5 high entropy alloys. Mater Sci Eng A. 2017 Dec;708:523–536.
  • Prasad H, Singh S, Panigrahi BB. Mechanical activated synthesis of alumina dispersed FeNiCoCrAlMn high entropy alloy. J Alloys Compd. 2017;692:720–726.
  • Li J, Craeghs W, Jing C, et al. Microstructure and physical performance of laser-induction nanocrystals modified high-entropy alloy composites on titanium alloy. Mater Des. 2017 Mar;117:363–370.
  • Mohanty S, Maity TN, Mukhopadhyay S, et al. Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy: microstructure and mechanical properties. Mater Sci Eng A. 2017 Jan;679:299–313.
  • Yang C-C, Hang Chau JL, Weng C-J, et al. Preparation of high-entropy AlCoCrCuFeNiSi alloy powders by gas atomization process. Mater Chem Phys. 2017 Dec;202:151–158.
  • Ganji RS, Sai Karthik P, Bhanu Sankara Rao K, et al. Strengthening mechanisms in equiatomic ultrafine grained AlCoCrCuFeNi high-entropy alloy studied by micro- and nanoindentation methods. Acta Mater. 2017 Feb;125:58–68.
  • Riva S, Tudball A, Mehraban S, et al. A novel high-entropy alloy-based composite material. J Alloys Compd. 2018 Jan;730:544–551.
  • Yang S, Pi J, Yang W, et al. Deformation twinning structure and interface in a FCC-based Al0.3FeNiCo1.2CrCu high-entropy alloy matrix composites. Mater Lett. 2018 Mar;214:50–52.
  • Yang S, Yan X, Yang K, et al. Effect of the addition of nano-Al2O3 on the microstructure and mechanical properties of twinned Al0.4FeCrCoNi1.2Ti0.3 alloys. Vacuum. 2016 Sep;131:69–72.
  • Zhang KB, Fu ZY, Zhang JY, et al. Characterization of nanocrystalline CoCrFeNiTiAl high-entropy solid solution processed by mechanical alloying. J Alloys Compd. 2010;495(1):33–38.
  • Joseph J, Hodgson P, Jarvis T, et al. Effect of hot isostatic pressing on the microstructure and mechanical properties of additive manufactured AlxCoCrFeNi high entropy alloys. Mater Sci Eng A. 2018 Aug;733:59–70.
  • Luo W, Liu Y, Luo Y, et al. Fabrication and characterization of WC-AlCoCrCuFeNi high-entropy alloy composites by spark plasma sintering. J Alloys Compd. 2018 Jul;754:163–170.
  • Erdogan A, Yener T, Zeytin S. Fast production of high entropy alloys (CoCrFeNiAlxTiy) by electric current activated sintering system. Vacuum. 2018 Sep;155:64–72.
  • Zhou PL, Xiao DH, Zhou PF, et al. Microstructure and properties of ultrafine grained AlCrFeCoNi/WC cemented carbides. Ceram Int. 2018;44(14):17160–17166.
  • Colombini E, Rosa R, Trombi L, et al. High entropy alloys obtained by field assisted powder metallurgy route: SPS and microwave heating. Mater Chem Phys. 2018 May;210:78–86.
  • Yusenko KV, Riva S, Crichton WA, et al. High-pressure high-temperature tailoring of high entropy alloys for extreme environments. J Alloys Compd. 2018 Mar;738:491–500.
  • Wang C, Ji W, Fu Z. Mechanical alloying and spark plasma sintering of CoCrFeNiMnAl high-entropy alloy. Adv Powder Technol. 2014;25(4):1334–1338.
  • Sriharitha R, Murty BS, Kottada RS. Alloying, thermal stability and strengthening in spark plasma sintered AlxCoCrCuFeNi high entropy alloys. J Alloys Compd. 2014;583:419–426.
  • Kunce I, Polanski M, Karczewski K, et al. Microstructural characterisation of high-entropy alloy AlCoCrFeNi fabricated by laser engineered net shaping. J Alloys Compd. 2015 Nov;648:751–758.
  • Gómez-Esparza CD, Baldenebro-López F, González-Rodelas L, et al. Series of nanocrystalline NiCoAlFe(Cr, Cu, Mo, Ti) high-entropy alloys produced by mechanical alloying. Mater Res. 2016 Aug;19(suppl 1):39–46.
  • Gómez-Esparza CD, Ochoa-Gamboa RA, Estrada-Guel I, et al. Microstructure of NiCoAlFeCuCr multi-component systems synthesized by mechanical alloying. J Alloys Compd. 2011 Jun;509:S279–S283.
  • Chen J, Niu P, Wei T, et al. Fabrication and mechanical properties of AlCoNiCrFe high-entropy alloy particle reinforced Cu matrix composites. J Alloys Compd. 2015;649:630–634.
  • Brif Y, Thomas M, Todd I. The use of high-entropy alloys in additive manufacturing. Scr Mater. 2015 Apr;99:93–96.
  • Fujieda T, Shiratori H, Kuwabara K, et al. First demonstration of promising selective electron beam melting method for utilizing high-entropy alloys as engineering materials. Mater Lett. 2015;159:12–15.
  • Joseph J, Jarvis T, Wu X, et al. Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted AlxCoCrFeNi high entropy alloys. Mater Sci Eng A. 2015;633:184–193.
  • Zhang A, Han J, Meng J, et al. Rapid preparation of AlCoCrFeNi high entropy alloy by spark plasma sintering from elemental powder mixture; 2016.
  • Tan Z, Wang L, Xue Y, et al. High-entropy alloy particle reinforced Al-based amorphous alloy composite with ultrahigh strength prepared by spark plasma sintering. Mater Des. 2016 Nov;109:219–226.
  • Joseph J, Stanford N, Hodgson P, et al. Tension/compression asymmetry in additive manufactured face centered cubic high entropy alloy. Scr Mater. 2017 Mar;129:30–34.
  • Veronesi P, Colombini E, Rosa R, et al. Microwave processing of high entropy alloys: A powder metallurgy approach. Chem Eng Process Process Intensif. 2017 Dec;122:397–403.
  • Wang R, Zhang K, Davies C, et al. Evolution of microstructure, mechanical and corrosion properties of AlCoCrFeNi high-entropy alloy prepared by direct laser fabrication. J Alloys Compd. 2017;694:971–981.
  • Nam S, Kim MJ, Hwang JY, et al. Strengthening of Al0.15CoCrCuFeNiTix–C (x = 0, 1, 2) high-entropy alloys by grain refinement and using nanoscale carbides via powder metallurgical route. J Alloys Compd. 2018 Sep;762:29–37.
  • Praveen S, Murty BS, Kottada RS. Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys. Mater Sci Eng A. 2012;534:83–89.
  • Lu T, Scudino S, Chen W, et al. The influence of nanocrystalline CoNiFeAl0.4Ti0.6Cr0.5 high-entropy alloy particles addition on microstructure and mechanical properties of SiCp/7075Al composites. Mater Sci Eng A. 2018;726:126–136.
  • Pohan RM, Gwalani B, Lee J, et al. Microstructures and mechanical properties of mechanically alloyed and spark plasma sintered Al0.3CoCrFeMnNi high entropy alloy. Mater Chem Phys. 2018 May;210:62–70.
  • Kuwabara K, Shiratori H, Fujieda T, et al. Mechanical and corrosion properties of AlCoCrFeNi high-entropy alloy fabricated with Selective electron beam melting. Addit Manuf. 2018;23:264–271.
  • Fu Z, Chen W, Jiang Z, et al. Influence of Cr removal on the microstructure and mechanical behaviour of a high-entropy Al0.8Ti0.2CoNiFeCr alloy fabricated by powder metallurgy. Powder Metall. 2018;61(2):106–114.
  • Colombini E, Lassinantti Gualtieri M, Rosa R, et al. SPS-assisted Synthesis of SICp reinforced high entropy alloys: reactivity of SIC and effects of pre-mechanical alloying and post-annealing treatment. Powder Metall. 2018;61(1):64–72.
  • Varalakshmi S, Kamaraj M, Murty BS. Processing and properties of nanocrystalline CuNiCoZnAlTi high entropy alloys by mechanical alloying. Mater Sci Eng A. 2010 Feb;527(4):1027–1030.
  • Chen Y-L, Hu Y-H, Hsieh C-A, et al. Competition between elements during mechanical alloying in an octonary multi-principal-element alloy system. J Alloys Compd. 2009 Jul;481(1–2):768–775.
  • Varalakshmi S, Kamaraj M, Murty BS. Formation and stability of equiatomic and nonequiatomic nanocrystalline CuNiCoZnAlTi high-entropy alloys by mechanical alloying. Metall Mater Trans A. 2010 Oct;41(10):2703–2709.
  • Fu Z, Chen W, Wen H, et al. Microstructure and mechanical behavior of a novel Co20Ni20Fe20Al20Ti20 alloy fabricated by mechanical alloying and spark plasma sintering. Mater Sci Eng A. 2015;644:10–16.
  • Wang P, Cai H, Cheng X. Effect of Ni/Cr ratio on phase, microstructure and mechanical properties of NixCoCuFeCr2−x (x = 1.0, 1.2, 1.5, 1.8 mol) high entropy alloys. J Alloys Compd. 2016 Mar;662:20–31.
  • Tariq NH, Naeem M, Hasan BA, et al. Effect of W and Zr on structural, thermal and magnetic properties of AlCoCrCuFeNi high entropy alloy. J Alloys Compd. 2013 Apr;556:79–85.
  • Yang S, Zhang Y, Yan X, et al. Deformation twins and interface characteristics of nano-Al2O3 reinforced Al0.4FeCrCo1.5NiTi0.3 high entropy alloy composites. Mater Chem Phys. 2018 May;210:240–244.
  • Chen W, Fu Z, Fang S, et al. Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy. Mater Des. 2013 Oct;51:854–860.
  • Fu Z, Chen W, Fang S, et al. Alloying behavior and deformation twinning in a CoNiFeCrAl0.6Ti0.4 high entropy alloy processed by spark plasma sintering. J Alloys Compd. 2013 Mar;553:316–323.
  • Varalakshmi S, Appa Rao G, Kamaraj M, et al. Hot consolidation and mechanical properties of nanocrystalline equiatomic AlFeTiCrZnCu high entropy alloy after mechanical alloying. J Mater Sci. 2010 Oct;45(19):5158–5163.
  • Ge W, Wu B, Wang S, et al. Characterization and properties of CuZrAlTiNi high entropy alloy coating obtained by mechanical alloying and vacuum hot pressing sintering. Adv Powder Technol. 2017 Oct;28(10):2556–2563.
  • Mohanty S, Gurao NP, Biswas K. Sinter ageing of equiatomic Al20Co20Cu20Zn20Ni20 high entropy alloy via mechanical alloying. Mater Sci Eng A. 2014;617:211–218.
  • Ge W, Wang Y, Shang C, et al. Microstructures and properties of equiatomic CuZr and CuZrAlTiNi bulk alloys fabricated by mechanical alloying and spark plasma sintering. J Mater Sci. 2017 May;52(10):5726–5737.
  • Ji W, Wang W, Wang H, et al. Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering. Intermetallics. 2015 Jan;56:24–27.
  • Yu PF, Zhang LJ, Cheng H, et al. The high-entropy alloys with high hardness and soft magnetic property prepared by mechanical alloying and high-pressure sintering. Intermetallics. 2016;70:82–87.
  • Wang B, Fu A, Huang X, et al. Mechanical properties and microstructure of the CoCrFeMnNi high entropy alloy under high strain rate compression. J Mater Eng Perform. 2016 Jul;25(7):2985–2992.
  • Liu B, Wang J, Liu Y, et al. Microstructure and mechanical properties of equimolar FeCoCrNi high entropy alloy prepared via powder extrusion. Intermetallics. 2016;75:25–30.
  • Wang J, Liu Y, Liu B, et al. Flow behavior and microstructures of powder metallurgical CrFeCoNiMo0.2 high entropy alloy during high temperature deformation. Mater Sci Eng A. 2017 Mar;689:233–242.
  • Rogal Ł, Kalita D, Litynska-Dobrzynska L. Cocrfemnni high entropy alloy matrix nanocomposite with addition of Al2O3. Intermetallics. 2017;86:104–109.
  • Eißmann N, Klöden B, Weißgärber T, et al. High-entropy alloy CoCrFeMnNi produced by powder metallurgy. Powder Metall. 2017;60(3):184–197.
  • Shang C, Axinte E, Sun J, et al. Cocrfeni(W1−xMox) high-entropy alloy coatings with excellent mechanical properties and corrosion resistance prepared by mechanical alloying and hot pressing sintering. Mater Des. 2017 Mar;117:193–202.
  • Haase C, Tang F, Wilms MB, et al. Combining thermodynamic modeling and 3D printing of elemental powder blends for high-throughput investigation of high-entropy alloys – Towards rapid alloy screening and design. Mater Sci Eng A. 2017;688:180–189.
  • Yim D, Kim W, Praveen S, et al. Shock wave compaction and sintering of mechanically alloyed CoCrFeMnNi high-entropy alloy powders. Mater Sci Eng A. 2017 Dec;708:291–300.
  • Hadraba H, Chlup Z, Dlouhy A, et al. Oxide dispersion strengthened CoCrFeNiMn high-entropy alloy. Mater Sci Eng A. 2017 Mar;689:252–256.
  • Rogal Ł, Kalita D, Tarasek A, et al. Effect of SiC nano-particles on microstructure and mechanical properties of the CoCrFeMnNi high entropy alloy. J Alloys Compd. 2017;708:344–352.
  • Liu Y, Wang J, Fang Q, et al. Preparation of superfine-grained high entropy alloy by spark plasma sintering gas atomized powder. Intermetallics. 2016;68:16–22.
  • Sathiyamoorthi P, Basu J, Kashyap S, et al. Thermal stability and grain boundary strengthening in ultrafine-grained CoCrFeNi high entropy alloy composite. Mater Des. 2017 Nov;134:426–433.
  • Sun C, Li P, Xi S, et al. A new type of high entropy alloy composite Fe18Ni23Co25Cr21Mo8WNb3C2 prepared by mechanical alloying and hot pressing sintering. Mater Sci Eng A. 2018;728:144–150.
  • Zhang A, Han J, Su B, et al. A promising new high temperature self-lubricating material: CoCrFeNiS0.5 high entropy alloy. Mater Sci Eng A. 2018;731:36–43.
  • Yim D, Jang MJ, Bae JW, et al. Compaction behavior of water-atomized CoCrFeMnNi high-entropy alloy powders. Mater Chem Phys. 2018 May;210:95–102.
  • Praveen S, Basu J, Kashyap S, et al. Exceptional resistance to grain growth in nanocrystalline CoCrFeNi high entropy alloy at high homologous temperatures. J Alloys Compd. 2016 Mar;662:361–367.
  • Dobeš F, Hadraba H, Chlup Z, et al. Compressive creep behavior of an oxide-dispersion-strengthened CoCrFeMnNi high-entropy alloy. Mater Sci Eng A. 2018;732:99–104.
  • Mane RB, Panigrahi BB. Effect of alloying order on non-isothermal sintering kinetics of mechanically alloyed high entropy alloy powders. Mater Lett. 2018 Apr;217:131–134.
  • Cheng H, Chen W, Liu X, et al. Effect of Ti and C additions on the microstructure and mechanical properties of the FeCoCrNiMn high-entropy alloy. Mater Sci Eng A. 2018 Mar;719:192–198.
  • Alcalá MD, Real C, Fombella I, et al. Effects of milling time, sintering temperature, Al content on the chemical nature, microhardness and microstructure of mechanochemically synthesized FeCoNiCrMn high entropy alloy. J Alloys Compd. 2018;749:834–843.
  • Xie Y, Cheng H, Tang Q, et al. Effects of N addition on microstructure and mechanical properties of CoCrFeNiMn high entropy alloy produced by mechanical alloying and vacuum hot pressing sintering. Intermetallics. 2018 Feb;93:228–234.
  • Zhang A, Han J, Su B, et al. Microstructure, mechanical properties and tribological performance of CoCrFeNi high entropy alloy matrix self-lubricating composite. Mater Des. 2017;114:253–263.
  • Velo IL, Gotor FJ, Alcalá MD, et al. Fabrication and characterization of WC-HEA cemented carbide based on the CoCrFeNiMn high entropy alloy. J Alloys Compd. 2018;746:1–8.
  • Zhu ZG, Nguyen QB, Ng FL, et al. Hierarchical microstructure and strengthening mechanisms of a CoCrFeNiMn high entropy alloy additively manufactured by selective laser melting. Scr Mater. 2018 Sep;154:20–24.
  • Zhou R, Chen G, Liu B, et al. Microstructures and wear behaviour of (FeCoCrNi)1-x(WC)x high entropy alloy composites. Int J Refract Met Hard Mater. 2018 Sep;75:56–62.
  • Szklarz Z, Lekki J, Bobrowski P, et al. The effect of SiC nanoparticles addition on the electrochemical response of mechanically alloyed CoCrFeMnNi high entropy alloy. Mater Chem Phys. 2018 Aug;215:385–392.
  • Wang B, Huang X, Fu A, et al. Serration behavior and microstructure of high entropy alloy CoCrFeMnNi prepared by powder metallurgy. Mater Sci Eng A. 2018 May;726:37–44.
  • Zhou R, Liu Y, Zhou C, et al. Microstructures and mechanical properties of C-containing FeCoCrNi high-entropy alloy fabricated by selective laser melting. Intermetallics. 2018;94:165–171.
  • Li R, Niu P, Yuan T, et al. Selective laser melting of an equiatomic CoCrFeMnNi high-entropy alloy: Processability, non-equilibrium microstructure and mechanical property. J Alloys Compd. 2018;746:125–134.
  • Guo J, Goh M, Zhu Z, et al. On the machining of selective laser melting CoCrFeMnNi high-entropy alloy. Mater Des. 2018;153:211–220.
  • Piglione A, Dovgyy B, Liu C, et al. Printability and microstructure of the CoCrFeMnNi high-entropy alloy fabricated by laser powder bed fusion. Mater Lett. 2018 Aug;224:22–25.
  • Zhang M, Zhang W, Liu Y, et al. Fecocrnimo high-entropy alloys prepared by powder metallurgy processing for diamond tool applications. Powder Metall. 2018;61(2):123–130.
  • Joo S-H, Kato H, Jang MJ, et al. Structure and properties of ultrafine-grained CoCrFeMnNi high-entropy alloys produced by mechanical alloying and spark plasma sintering. J Alloys Compd. 2017 Mar;698:591–604.
  • Yang Q, Tang Y, Wen Y, et al. Microstructures and properties of CoCrCuFeNiMox high-entropy alloys fabricated by mechanical alloying and spark plasma sintering. Powder Metall. 2018;61(2):115–122.
  • Mane RB, Panigrahi B. Sintering mechanism of CoCrFeMnNi high-entropy alloy powders. Powder Metall. 2018;61(2):131–138.
  • Praveen S, Murty BS, Kottada RS. Phase Evolution and densification behavior of nanocrystalline multicomponent high entropy alloys during spark plasma sintering. JOM. 2013;65(12):1797–1804.
  • He Z-W, Wang M-Z, Hao X-L, et al. Novel cemented carbide produced with TiN0.3 and high-entropy alloys. Rare Met. 2017 Jun;36(6):494–500.
  • Praveen S, Anupam A, Tilak R, et al. Phase evolution and thermal stability of AlCoCrFe high entropy alloy with carbon as unsolicited addition from milling media. Mater Chem Phys. 2018;210:57–61.
  • Qiu Z, Yao C, Feng K, et al. Cryogenic deformation mechanism of CrMnFeCoNi high-entropy alloy fabricated by laser additive manufacturing process. Int J Light Mater Manuf. 2018 Mar;1(1):33–39.
  • de la Obra AG, Avilés MA, Torres Y, et al. A new family of cermets: Chemically complex but microstructurally simple. Int J Refract Met Hard Mater. 2017 Feb;63:17–25.
  • Liu WH, Lu ZP, He JY, et al. Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases. Acta Mater. 2016 Sep;116:332–342.
  • Wu B, Chen W, Jiang Z, et al. Influence of Ti addition on microstructure and mechanical behavior of a FCC-based Fe30Ni30Co30Mn10 alloy. Mater Sci Eng A. 2016 Oct;676:492–500.
  • Fu Z, Chen W, Xiao H, et al. Fabrication and properties of nanocrystalline Co0.5FeNiCrTi0.5 high entropy alloy by MA–SPS technique. Mater Des. 2013 Feb;44:535–539.
  • Lin C-M, Tsai C-W, Huang S-M, et al. New TiC/Co1.5CrFeNi1.5Ti0.5 cermet with slow TiC coarsening during sintering. JOM. 2014 Oct;66(10):2050–2056.
  • Kunce I, Polanski M, Bystrzycki J. Structure and hydrogen storage properties of a high entropy ZrTiVCrFeNi alloy synthesized using laser Engineered Net shaping (LENS). Int J Hydrogen Energy. 2013;38(27):12180–12189.
  • Moravcik I, Cizek J, Zapletal J, et al. Microstructure and mechanical properties of Ni1,5Co1,5CrFeTi0,5 high entropy alloy fabricated by mechanical alloying and spark plasma sintering. Mater Des. 2017 Apr;119:141–150.
  • Cai Z, Jin G, Cui X, et al. Experimental and simulated data about microstructure and phase composition of a NiCrCoTiV high-entropy alloy prepared by vacuum hot-pressing sintering. Vacuum. 2016 Feb;124:5–10.
  • Liu B, Wang J, Chen J, et al. Ultra-high strength TiC/refractory high-entropy-alloy composite prepared by powder metallurgy. JOM. 2017 Apr;69(4):651–656.
  • Zepon G, Leiva DR, Strozi RB, et al. Hydrogen-induced phase transition of MgZrTiFe0.5Co0.5Ni0.5 high entropy alloy. Int J Hydrogen Energy. 2018 Jan;43(3):1702–1708.
  • Fu Z, MacDonald BE, Zhang D, et al. Fcc nanostructured TiFeCoNi alloy with multi-scale grains and enhanced plasticity. Scr Mater. 2018 Jan;143:108–112.
  • Holmström E, Lizárraga R, Linder D, et al. High entropy alloys: Substituting for cobalt in cutting edge technology. Appl Mater Today. 2018 Sep;12:322–329.
  • Cai Z, Cui X, Liu Z, et al. Microstructure and wear resistance of laser cladded Ni-Cr-Co-Ti-V high-entropy alloy coating after laser remelting processing. Opt Laser Technol. 2018;99:276–281.
  • Prieto E, De Oro Calderon R, Konegger T, et al. Processing of a new high entropy alloy: AlCrFeMoNiTi. Powder Metall. 2018;61(3):258–265.
  • Koundinya NTBN, Sajith Babu C, Sivaprasad K, et al. Phase Evolution and thermal analysis of nanocrystalline AlCrCuFeNiZn high entropy alloy produced by mechanical alloying. J Mater Eng Perform. 2013 Oct;22(10):3077–3084.
  • Maulik O, Kumar D, Kumar S, et al. Structural evolution of spark plasma sintered AlFeCuCrMgx (x = 0, 0.5, 1, 1.7) high entropy alloys. Intermetallics. 2016;77:46–56.
  • Mridha S, Samal S, Khan PY, et al. Processing and consolidation of nanocrystalline Cu-Zn-Ti-Fe-Cr high-entropy alloys via mechanical alloying. Metall Mater Trans A. 2013 Oct;44(10):4532–4541.
  • Sharma AS, Yadav S, Biswas K, et al. High-entropy alloys and metallic nanocomposites: processing challenges, microstructure development and property enhancement. Mater Sci Eng R Reports. 2018 Sep;131:1–42.
  • Yadav S, Kumar A, Biswas K. Wear behavior of high entropy alloys containing soft dispersoids (Pb, Bi). Mater Chem Phys. 2018 May;210:222–232.
  • Yadav S, Sarkar S, Aggarwal A, et al. Wear and mechanical properties of novel (CuCrFeTiZn)100-xPbx high entropy alloy composite via mechanical alloying and spark plasma sintering. Wear. 2018;410:93–109.
  • Kumar D, Maulik O, Kumar S, et al. Phase and thermal study of equiatomic AlCuCrFeMnW high entropy alloy processed via spark plasma sintering. Mater Chem Phys. 2018;210:71–77.
  • Murali M, Babu SPK, Majhi J, et al. Processing and characterisation of nano crystalline AlCoCrCuFeTix high-entropy alloy. Powder Metall. 2018;61(2):139–148.
  • Dobbelstein H, Thiele M, Gurevich EL, et al. Direct metal deposition of refractory high entropy alloy MoNbTaW. Phys Procedia. 2016 Jan;83:624–633.
  • Kang B, Lee J, Ryu HJ, et al. Ultra-high strength WNbMoTaV high-entropy alloys with fine grain structure fabricated by powder metallurgical process. Mater Sci Eng A. 2018;712:616–624.
  • Wang P, Cai H, Zhou S, et al. Processing, microstructure and properties of Ni1.5CoCuFeCr0.5−xVx high entropy alloys with carbon introduced from process control agent. J Alloys Compd. 2017 Feb;695:462–475.
  • Waseem OA, Lee J, Lee HM, et al. The effect of Ti on the sintering and mechanical properties of refractory high-entropy alloy TixWTaVCr fabricated via spark plasma sintering for fusion plasma-facing materials. Mater Chem Phys. 2018;210:87–94.
  • Waseem OA, Ryu HJ. Powder metallurgy processing of a WxTaTiVCr high-entropy alloy and its derivative alloys for fusion material applications. Sci Rep. 2017;7(1):1926.
  • Linder D, Holmström E, Norgren S. High entropy alloy binders in gradient sintered hardmetal. Int J Refract Met Hard Mater. 2018 Feb;71:217–220.
  • Cao Y, Liu Y, Liu B, et al. Precipitation behavior during hot deformation of powder metallurgy Ti-Nb-Ta-Zr-Al high entropy alloys. Intermetallics. 2018 Sep;100:95–103.
  • Kunce I, Polanski M, Bystrzycki J. Microstructure and hydrogen storage properties of a TiZrNbMoV high entropy alloy synthesized using Laser Engineered Net Shaping (LENS). Int J Hydrogen Energy. 2014 Jun;39(18):9904–9910.
  • Raza A, Kang B, Lee J, et al. Transition in microstructural and mechanical behavior by reduction of sigma-forming element content in a novel high entropy alloy. Mater Des. 2018 May;145:11–19.
  • Song R, Wei L, Yang C, et al. Phase formation and strengthening mechanisms in a dual-phase nanocrystalline CrMnFeVTi high-entropy alloy with ultrahigh hardness. J Alloys Compd. 2018 May;744:552–560.
  • Senkov O, Isheim D, Seidman D, et al. Development of a refractory high entropy Superalloy. Entropy. 2016 Mar;18(3):102.
  • Zhang Y, Zhou YJ, Lin JP, et al. Solid-solution phase formation rules for multi-component alloys. Adv Eng Mater. 2008;10(6):534–538.
  • Guo S, Liu CT. Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Prog Nat Sci Mater Int. 2011 Dec;21(6):433–446.
  • Tian F, Varga LK, Chen N, et al. Empirical design of single phase high-entropy alloys with high hardness. Intermetallics. 2015;58:1–6.
  • Guo S, Hu Q, Ng C, et al. More than entropy in high-entropy alloys: forming solid solutions or amorphous phase. Intermetallics. 2013 Oct;41:96–103.
  • Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J Appl Phys. 2011 May;109(10):103505.
  • Tsai M-H, Tsai K-Y, Tsai C-W, et al. Criterion for sigma phase formation in Cr- and V-containing high-entropy alloys. Mater Res Lett. 2013;1(4):207–212.
  • Górecki K, Zýka J, Malek J, et al. Sintering and heat treatment of Al 15 Ti 5 Co 35 Ni 25 Fe 20 high-entropy alloy. IOP Conf Ser Mater Sci Eng. 2017 Feb;179:012027.
  • Qiu X-W, Zhang Y-P, He L, et al. Microstructure and corrosion resistance of AlCrFeCuCo high entropy alloy. J Alloys Compd. 2013;549:195–199.
  • Eymann K, Riedl T, Bram A, et al. Consolidation of mechanically alloyed nanocrystalline Cu–Nb–ZrO2 powder by spark plasma sintering. J Alloys Compd. 2012;535:62–69.
  • Qiu X-W, Liu C-G. Microstructure and properties of Al2CrFeCoCuTiNix high-entropy alloys prepared by laser cladding. J Alloys Compd. 2013 Mar;553:216–220.
  • Munir ZA, Anselmi-Tamburini U, Ohyanagi M. The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J Mater Sci. 2006 Feb;41(3):763–777.
  • Gali A, George EP. Tensile properties of high- and medium-entropy alloys. Intermetallics. 2013 Aug;39:74–78.
  • Curtze S, Kuokkala V-T. Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate. Acta Mater. 2010 Sep;58(15):5129–5141.
  • Santos EC, Shiomi M, Osakada K, et al. Rapid manufacturing of metal components by laser forming. Int J Mach Tools Manuf. 2006 Oct;46(12–13):1459–1468.
  • Gu DD, Meiners W, Wissenbach K, et al. Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev. 2012;57(3):133–164.
  • Frazier WE. Metal additive manufacturing: a review. J Mater Eng Perform. 2014 Jun;23(6):1917–1928.
  • Gorsse S, Hutchinson C, Gouné M, et al. Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys. Sci Technol Adv Mater. 2017;18(1):584–610.
  • He Q, Yang Y. On lattice distortion in high entropy alloys. Front Mater. 2018;5:42.
  • Otto F, Dlouhý A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 2013 Sep;61(15):5743–5755.
  • Cai B, Liu B, Kabra S, et al. Deformation mechanisms of Mo alloyed FeCoCrNi high entropy alloy: In situ neutron diffraction. Acta Mater. 2017 Apr;127:471–480.
  • Tsai SKCC-W, Chen Y-L, Tsai M-H, et al. Deformation and annealing behaviors of high-entropy alloy Al0.5CoCrCuFeNi. J Alloys Compd. 2009 Nov;486(1–2):427–435.
  • El-Danaf E, Kalidindi SR, Doherty RD. Influence of grain size and stacking-fault energy on deformation twinning in fcc metals. Metall Mater Trans A. 1999 May;30(5):1223–1233.
  • Zhang KLY, Tao NR. Effect of stacking-fault energy on deformation twin thickness in Cu–Al alloys. Scr Mater. 2009 Feb;60(4):211–213.
  • Ma E. Eight routes to improve the tensile ductility of bulk nanostructured metals and alloys. JOM. 2006;58(4):49–53.
  • Praveen S, Kim HS. High-entropy alloys: potential candidates for high-temperature applications – an overview. Adv Eng Mater. 2018; 20(1):1700645.
  • Lu Y, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: eutectic high-entropy alloys. Sci Rep. 2014 Aug;4:6200.
  • Chauhan A, Litvinov D, Aktaa J. High temperature tensile properties and fracture characteristics of bimodal 12Cr-ODS steel. J Nucl Mater. 2016 Jan;468:1–8.
  • Zhou YJ, Zhang Y, Wang YL, et al. Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Appl Phys Lett. 2007 Apr;90(18):181904.
  • Dong Y, Zhou K, Lu Y, et al. Effect of vanadium addition on the microstructure and properties of AlCoCrFeNi high entropy alloy. Mater Des. 2014 May;57:67–72.
  • Salishchev GA, Tikhonovsky MA, Shaysultanov DG, et al. Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system. J Alloys Compd. 2014 Apr;591:11–21.
  • Stepanov ND, Shaysultanov DG, Salishchev GA, et al. Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy. Mater Lett. 2015 Mar;142:153–155.
  • Zhou YJ, Zhang Y, Wang YL, et al. Microstructure and compressive properties of multicomponent Alx(TiVCrMnFeCoNiCu)100−x high-entropy alloys. Mater Sci Eng A. 2007 Apr;454–455:260–265.
  • Wang XF, Zhang Y, Qiao Y, et al. Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys. Intermetallics. 2007 Mar;15(3):357–362.
  • Wang YP, Li BS, Ren MX, et al. Microstructure and compressive properties of AlCrFeCoNi high entropy alloy. Mater Sci Eng A. 2008 Sep;491(1–2):154–158.
  • Li BS, Wang YP, Ren MX, et al. Effects of Mn, Ti and V on the microstructure and properties of AlCrFeCoNiCu high entropy alloy. Mater Sci Eng A. 2008 Dec;498(1–2):482–486.
  • Senkov ON, Wilks GB, Scott JM, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics. 2011 May;19(5):698–706.
  • Ma SG, Zhang Y. Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy. Mater Sci Eng A. 2012 Jan;532:480–486.
  • Dong Y, Lu Y, Kong J, et al. Microstructure and mechanical properties of multi-component AlCrFeNiMox high-entropy alloys. J Alloys Compd. 2013 Oct;573:96–101.
  • Senkov ON, Woodward C, Miracle DB. Microstructure and properties of aluminum-containing refractory high-entropy alloys. JOM. 2014 Oct;66(10):2030–2042.
  • Yao MJ, Pradeep KG, Tasan CC, et al. A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility. Scr Mater. 2014 Feb;72–73:5–8.
  • Kuznetsov AV, Shaysultanov DG, Stepanov ND, et al. Tensile properties of an AlCrCuNiFeCo high-entropy alloy in as-cast and wrought conditions. Mater Sci Eng A. 2012 Jan;533:107–118.
  • Tang Z, Senkov ON, Parish CM, et al. Tensile ductility of an AlCoCrFeNi multi-phase high-entropy alloy through hot isostatic pressing (HIP) and homogenization. Mater Sci Eng A. 2015 Oct;647:229–240.
  • Wani IS, Bhattacharjee T, Sheikh S, et al. Ultrafine-Grained AlCoCrFeNi2.1 Eutectic high-entropy alloy. Mater Res Lett. 2016;4(3):174–179.
  • Dong Y, Gao X, Lu Y, et al. A multi-component AlCrFe2Ni2 alloy with excellent mechanical properties. Mater Lett. 2016 Apr;169:62–64.
  • Liu WH, He JY, Huang HL, et al. Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys. Intermetallics. 2015 May;60:1–8.
  • Ma SG, Zhang SF, Qiao JW, et al. Superior high tensile elongation of a single-crystal CoCrFeNiAl0.3 high-entropy alloy by Bridgman solidification. Intermetallics. 2014 Nov;54:104–109.
  • He JY, Liu WH, Wang H, et al. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Mater. 2014 Jan;62:105–113.
  • Shun T-T, Du Y-C. Microstructure and tensile behaviors of FCC Al0.3CoCrFeNi high entropy alloy. J Alloys Compd. 2009 Jun;479(1–2):157–160.
  • Zuo T, Ren S, Liaw PK, et al. Processing effects on the magnetic and mechanical properties of FeCoNiAl0.2Si0.2 high entropy alloy. Int J Miner Metall Mater. 2013 Jun;20(6):549–555.
  • Wu YD, Cai YH, Wang T, et al. A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties. Mater Lett. 2014 Sep;130:277–280.
  • Tsai C-W, Tsai M-H, Tsai K-Y, et al. Microstructure and tensile properties of Al0.5CoCrCuFeNi alloys produced by simple rolling and annealing. Mater Sci Technol. 2015;31(10):1178–1183.
  • Deng Y, Tasan CC, Pradeep KG, et al. Design of a twinning-induced plasticity high entropy alloy. Acta Mater. 2015 Aug;94:124–133.
  • Tsai C-W, Tsai M-H, Yeh J-W, et al. Effect of temperature on mechanical properties of Al0.5CoCrCuFeNi wrought alloy. J Alloys Compd. 2010 Feb;490(1–2):160–165.
  • Niinomi M. Mechanical properties of biomedical titanium alloys. Mater Sci Eng A. 1998 Mar;243(1–2):231–236.
  • Lu JW, et al. Microstructure and mechanical properties of new high strength beta-titanium alloy Ti-1300. Mater Sci Eng A. 2015 Jan;621:182–189.
  • Chen J, Young B. Stress–strain curves for stainless steel at elevated temperatures. Eng Struct. 2006 Jan;28(2):229–239.
  • Venkatesh V, Rack HJ. Elevated temperature hardening of INCONEL 690. Mech Mater. 1998 Sep;30(1):69–81.
  • Schaeublin R, Leguey T, Spätig P, et al. Microstructure and mechanical properties of two ODS ferritic/martensitic steels. J Nucl Mater. 2002 Dec;307–311:778–782.
  • Sundar RS, Deevi SC. High-temperature strength and creep resistance of FeAl. Mater Sci Eng A. 2003 Sep;357(1–2):124–133.
  • Zhang KB, Fu ZY, Zhang JY, et al. Annealing on the structure and properties evolution of the CoCrFeNiCuAl high-entropy alloy. J Alloys Compd. 2010 Jul;502(2):295–299.
  • Shinde SR, Ogale SB, Higgins JS, et al. Co-occurrence of superparamagnetism and Anomalous Hall effect in highly reduced cobalt-doped Rutile TiO2-δ films. Phys Rev Lett. 2004;92(16):166601.
  • Aoki M, Noritake T, Ito A, et al. Improvement of cyclic durability of Ti–Cr–V alloy by Fe substitution. Int J Hydrogen Energy. 2011 Sep;36(19):12329–12332.
  • Prabakaran RK, Naveen Sait A, Senthilkumar V. Synthesis and characteristization of high entropy alloy (CrMnFeNiCu) reinforced AA6061 aluminium matrix composite. Mech Mech Eng. 2017;21(2):415–424.
  • Karthik GM, Panikar S, Ram GDJ, et al. Additive manufacturing of an aluminum matrix composite reinforced with nanocrystalline high-entropy alloy particles. Mater Sci Eng A. 2017;679:193–203.
  • Chen C-S, Yang C-C, Chai H-Y, et al. Novel cermet material of WC/multi-element alloy. Int J Refract Met Hard Mater. 2014 Mar;43:200–204.
  • Shen TT, Xiao DH, Ou XQ, et al. Effects of LaB6 addition on the microstructure and mechanical properties of ultrafine grained WC–10Co alloys. J Alloys Compd. 2011 Jan;509(4):1236–1243.
  • Zhou P-F, Xiao D-H, Yuan T-C. Comparison between ultrafine-grained WC–Co and WC–HEA-cemented carbides. Powder Metall. 2017;60(1):1–6.
  • El-Eskandarany MS, Mahday AA, Ahmed H, et al. Synthesis and characterizations of ball-milled nanocrystalline WC and nanocomposite WC–Co powders and subsequent consolidations. J Alloys Compd. 2000 Nov;312(1–2):315–325.
  • Sun L, Jia C, Lin C, et al. VC addition prepared ultrafine WC-11Co composites by spark plasma sintering. J Iron Steel Res Int. 2007 Sep;14(5):85–89.
  • Cha SI, Hong SH, Kim BK. Spark plasma sintering behavior of nanocrystalline WC–10Co cemented carbide powders. Mater Sci Eng A. 2003 Jun;351(1–2):31–38.
  • Kim H-C, Shon I-J, Jeong I-K, et al. Rapid sintering of ultra fine WC and WC-Co hard materials by high-frequency induction heated sintering and their mechanical properties. Met Mater Int. 2007 Feb;13(1):39–45.
  • Michalski A, Siemiaszko D. Nanocrystalline cemented carbides sintered by the pulse plasma method. Int J Refract Met Hard Mater. 2007 Mar;25(2):153–158.
  • Lin C, Kny E, Yuan G, et al. Microstructure and properties of ultrafine WC–0.6VC–10Co hardmetals densified by pressure-assisted critical liquid phase sintering. J Alloys Compd. 2004 Nov;383(1–2):98–102.
  • Sivaprahasam D, Chandrasekar SB, Sundaresan R. Microstructure and mechanical properties of nanocrystalline WC–12Co consolidated by spark plasma sintering. Int J Refract Met Hard Mater. 2007 Mar;25(2):144–152.
  • Zhu LH, Huang QW, Zhao HF. Preparation of nanocrystalline WC-10Co-0.8VC by spark plasma sintering. J Mater Sci Lett. 2003;22:1631–1633.
  • Fang ZZ, Wang X, Ryu T, et al. Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide – A review. Int J Refract Met Hard Mater. 2009;27(2):288–299.
  • Moravcik I, Gouvea L, Hornik V, et al. Synergic strengthening by oxide and coherent precipitate dispersions in high-entropy alloy prepared by powder metallurgy. Scr Mater. 2018;157:24–29.
  • Andersson J-O, Helander T, Höglund L, et al. Thermo-Calc & DICTRA, computational tools for materials science. Calphad. 2002 Jun;26(2):273–312.
  • Saunders N, Guo UKZ, Li X, et al. Using JMatPro to model materials properties and behavior. JOM. 2003;55(12):60–65.
  • Sistla HR, Newkirk JW, Frank Liou F. Effect of Al/Ni ratio, heat treatment on phase transformations and microstructure of AlxFeCoCrNi2−x (x = 0.3, 1) high entropy alloys. Mater Des. 2015 Sep;81:113–121.
  • Kilmametov A, Kulagin R, Mazilkin A, et al. High-pressure torsion driven mechanical alloying of CoCrFeMnNi high entropy alloy. Scr Mater. 2019;158:29–33.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.