254
Views
16
CrossRef citations to date
0
Altmetric
Regular papers

The impact of powder oxygen content on formability of 12CrNi2 alloy steel fabricated by laser melting deposition

, , , , , & show all
Pages 186-195 | Received 30 Jan 2019, Accepted 30 Apr 2019, Published online: 16 May 2019

References

  • Brandt M. Laser additive manufacturing. Amsterdam: Elsevier; 2017.
  • Singh S, Ramakrishna S. Biomedical applications of additive manufacturing: present and future. Curr Opin Biomed Eng. 2017;2:105–115. doi: 10.1016/j.cobme.2017.05.006
  • Verlee B, Dormal T, Lecomte-Beckers J. Density and porosity control of sintered 316L stainless steel parts produced by additive manufacturing. Powder Metall. 2012;55(4):260–267. doi: 10.1179/0032589912Z.00000000082
  • Vandenbroucke B, Kruth J. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyp J. 2013;13(4):196–203. doi: 10.1108/13552540710776142
  • Dinda GP, Dasgupta AK, Mazumder J. Laser aided direct metal deposition of Inconel 625 superalloy: microstructural evolution and thermal stability. Mater Sci Eng A. 2009;509(1-2):98–104. doi: 10.1016/j.msea.2009.01.009
  • Wang Q, Zhang S, Zhang CH, et al. A high strength low alloy steel fabricated by direct laser deposition. Vacuum. 2019;161:225–231. doi: 10.1016/j.vacuum.2018.12.030
  • Wang Q, Zhang S, Zhang CH, et al. Microstructure evolution and EBSD analysis of a graded steel fabricated by laser additive manufacturing. Vacuum. 2017;141:68–81. doi: 10.1016/j.vacuum.2017.03.021
  • Sames WJ, List FA, Pannala S, et al. The metallurgy and processing science of metal additive manufacturing. Int Mater Rev. 2016;61(5):1–46. doi: 10.1080/09506608.2015.1116649
  • Thompson SM, Bian L, Shamsaei N, et al. An overview of direct laser deposition for additive manufacturing; part I: Transport phenomena, modeling and diagnostics. Addit Manuf. 2015;8:36–62. doi: 10.1016/j.addma.2015.07.001
  • Lewandowski JJ, Seifi M. Metal additive manufacturing: A review of mechanical properties. Annu Rev Mater Res. 2016;46(1):151–186. doi: 10.1146/annurev-matsci-070115-032024
  • Zhan XH, Qi CQ, Zhou JJ, et al. Effect of heat input on the subgrains of laser melting deposited Invar alloy. Opt Laser Technol. 2019;109:577–583. doi: 10.1016/j.optlastec.2018.08.013
  • Zhan XH, Meng Y, Zhou JJ, et al. Quantitative research on microstructure and thermal physical mechanism in laser melting deposition for Invar alloy. J Manuf Process. 2018;31:221–231. doi: 10.1016/j.jmapro.2017.11.018
  • Bai L, Le G, Liu X, et al. Grain morphologies and microstructures of laser melting deposited V-5Cr-5Ti alloys. J Alloys Compd. 2018;745:716–724. doi: 10.1016/j.jallcom.2018.02.249
  • Zhang K, Wang SJ, Liu WJ, et al. Effects of substrate preheating on the thin-wall part built by laser metal deposition shaping. Appl Surf Sci. 2014;317:839–855. doi: 10.1016/j.apsusc.2014.08.113
  • Attar H, Prashanth KG, Zhang LC, et al. Effect of powder particle shape on the properties of in situ Ti-TiB composite materials produced by selective laser melting. J Mater Sci Technol. 2015;31(10):1001–1005. doi: 10.1016/j.jmst.2015.08.007
  • Li XP, O’Donnell KM, Sercombe TB. Selective laser melting of Al-12Si alloy: Enhanced densification via powder drying. Addit Manuf. 2016;10:10–14. doi: 10.1016/j.addma.2016.01.003
  • Wang L, Wei QS, He WT, et al. Influence of powder characteristic and process parameters on SLM formability. J Huazhong U Sci-Nat. 2012;40(6):20–23.
  • Seetharam R, Subbu SK, Davidson MJ. Hot workability and densification behavior of sintered powder metallurgy Al-B4C preforms during upsetting. J Manuf Process. 2017;28:309–318. doi: 10.1016/j.jmapro.2017.06.012
  • Appa RG, Srinivas M, Sarma DS. Effect of oxygen content of powder on microstructure and mechanical properties of hot isostatically pressed superalloy Inconel 718. Mater Sci Eng A. 2006;435-436:84–99. doi: 10.1016/j.msea.2006.07.053
  • Yan M, Liu Y, Liu YB, et al. Simultaneous gettering of oxygen and chlorine and homogenization of the β phase by rare earth hydride additions to a powder metallurgy Ti-2.25Mo-1.5Fe alloy. Scr Mater. 2012;67(5):491–494. doi: 10.1016/j.scriptamat.2012.06.009
  • Jiang R, Bull DJ, Proprentner D, et al. Effects of oxygen-related damage on dwell-fatigue crack propagation in a P/M Ni-based superalloy: from 2D to 3D assessment. Int J Fatigue. 2017;99:175–186. doi: 10.1016/j.ijfatigue.2017.03.003
  • Simchi A. The role of particle size on the laser sintering of iron powder. Metall Mater Trans B. 2004;35(5):937–948. doi: 10.1007/s11663-004-0088-3
  • Slotwinski JA, Garboczi EJ, Stutzman P E, et al. Characterization of metal powders used for additive manufacturing. J Res Natl Inst Stan. 2014;119:460–493. doi: 10.6028/jres.119.018
  • Liu Q, Wang YD, Zheng H, et al. Microstructure and mechanical properties of LMD-SLM hybrid forming Ti6Al4 V alloy. Mater Sci Eng A. 2016;660:24–33. doi: 10.1016/j.msea.2016.02.069
  • Ghosh S. Predictive modeling of solidification during laser additive manufacturing of nickel superalloys: recent developments, future directions. Mater Res Express. 2018;5(1):012001, DOI:10.1088/2053-1591/aaa04c
  • Zhang CH, Zhang H, Wu CL, et al. Multi-layer functional graded stainless steel fabricated by laser melting deposition. Vacuum. 2017;141:181–187. doi: 10.1016/j.vacuum.2017.04.020
  • Pleass C, Jothi S. Influence of powder characteristics and additive manufacturing process parameters on the microstructure and mechanical behaviour of Inconel 625 fabricated by selective laser melting. Addit Manuf. 2018;24:419–431. doi: 10.1016/j.addma.2018.09.023
  • Boisselier D, Sankaré S. Influence of powder characteristics in laser direct metal deposition of SS316L for metallic parts manufacturing. Phys Procedia. 2012;39(6):455–463. doi: 10.1016/j.phpro.2012.10.061
  • Yu TB, Zhao Y, Sun JY, et al. Process parameters optimization and mechanical properties of forming parts by direct laser fabrication of YCF101 alloy. J Mater Process Tech. 2018;262:75–84. doi: 10.1016/j.jmatprotec.2018.06.023
  • Wang XL, Deng DW, Yi HL, et al. Influences of pulse laser parameters on properties of AISI316L stainless steel thin-walled part by laser material deposition. Opt Laser Technol. 2017;92:5–14. doi: 10.1016/j.optlastec.2016.12.021
  • Liu Y, Liu C, Liu WS, et al. Optimization of parameters in laser powder deposition AlSi10Mg alloy using Taguchi method. Opt Laser Technol. 2019;111:470–480. doi: 10.1016/j.optlastec.2018.10.030
  • Zheng MY, Zhang SM, Hu Q, et al. Microstructural characterisation of CuAgZr powder particles produced by argon gas atomisation. Powder Metall. 2018;61(3):231–240. doi: 10.1080/00325899.2018.1470288
  • Chen G, Zhao SY, Tan P, et al. A comparative study of Ti-6Al-4 V powders for additive manufacturing by gas atomization, plasma rotating electrode process and plasma atomization. Powder Technol. 2018;333:38–46. doi: 10.1016/j.powtec.2018.04.013
  • Efe M, Kim HJ, Chandrasekar S, et al. The chemical state and control of oxygen in powder metallurgy tantalum. Mater Sci Eng A. 2012;544:1–9. doi: 10.1016/j.msea.2012.01.100
  • Aksoy A, ÃœNal R. Effects of gas pressure and protrusion length of melt delivery tube on powder size and powder morphology of nitrogen gas atomised tin powders. Powder Metall. 2006;49(4):349–354. doi: 10.1179/174329006X89425
  • Shi CF, Chen SY, Xia Q, et al. Preparation and printability of 24CrNiMo alloy steel powder for selective laser melting fabricating brake disc. Powder Metall. 2018;61(1):73–80. doi: 10.1080/00325899.2017.1396019
  • Nguyen QB, Nai MLS, Zhu ZG, et al. Characteristics of Inconel powders for powder-bed additive manufacturing. Eng. 2017;3:695–700. doi: 10.1016/J.ENG.2017.05.012
  • Yi H, Qi LH, Luo J, et al. Direct fabrication of metal tubes with high-quality inner surfaces via droplet deposition over soluble cores. J Mater Process Technol. 2019;264:145–154. doi: 10.1016/j.jmatprotec.2018.09.004
  • Yi H, Qi LH, Luo J, et al. Effect of the surface morphology of solidified droplet on remelting between neighboring aluminum droplets. Int J Mach Tool Manu. 2018;130–131:1–11. doi: 10.1016/j.ijmachtools.2018.03.006
  • Mostafaei A, Hilla C, Stevens EL, et al. Comparison of characterization methods for differently atomized nickel-based alloy 625 powders. Powder Technol. 2018;333:180–192. doi: 10.1016/j.powtec.2018.04.014
  • Yi H, Qi LH, Luo J, et al. Pinhole formation from liquid metal microdroplets impact on solid surfaces. Appl Phys Lett. 2016;108(4):041601, DOI:10.1063/1.4940404
  • Sutton AT, Kriewall CS, Leu MC, et al. Powder characterisation techniques and effects of powder characteristics on part properties in powder-bed fusion processes. Virtual Phys Prototyp. 2017;12(1):3–29. doi: 10.1080/17452759.2016.1250605
  • Iebba M, Astarita A, Mistretta D, et al. Influence of powder characteristics on formation of porosity in additive manufacturing of Ti-6Al-4 V components. J Mater Eng Perform. 2017;26(8):4138–4147. doi: 10.1007/s11665-017-2796-2
  • He H, Lou J, Li YM, et al. Effects of oxygen contents on sintering mechanism and sintering-neck growth behaviour of Fe-Cr powder. Powder Technol. 2018;329:12–18. doi: 10.1016/j.powtec.2018.01.036
  • Yang XY, Peng X, Chen J, et al. Effect of a small increase in the Ni content on the properties of a laser surface clad Fe-based alloy. Appl Surf Sci. 2007;253(9):4420–4426. doi: 10.1016/j.apsusc.2006.09.068
  • Song B, Dong S, Liu Q, et al. Vacuum heat treatment of iron parts produced by selective laser melting: microstructure, residual stress and tensile behavior. Mater Des. 2014;54(2):727–733. doi: 10.1016/j.matdes.2013.08.085
  • Kacher J, Landon C, Adams BL, et al. Bragg's Law diffraction simulations for electron backscatter diffraction analysis. Ultramicroscopy. 2009;109:1148–1156. doi: 10.1016/j.ultramic.2009.04.007
  • Zhou Y, Chen SY, Chen XT, et al. The evolution of bainite and mechanical properties of direct laser deposition 12CrNi2 alloy steel at different laser power. Mater Sci Eng A. 2018;742:150–161. doi: 10.1016/j.msea.2018.10.092
  • Zhang H, Zou Y, Zou ZD, et al. Effects of chromium addition on microstructure and properties of TiC-VC reinforced Fe-based laser cladding coatings. J Alloys Compd. 2014;614:107–112. doi: 10.1016/j.jallcom.2014.06.073
  • Krell J, Röttger A, Geenen K, et al. General investiagtions on processing tool steel X40CrMoV5-1 with selective laser melting. J Mater Process Technol. 2018;255:679–688. doi: 10.1016/j.jmatprotec.2018.01.012
  • Zeng C, Tian W, Liao WH, et al. Microstructure and porosity evaluation in laser-cladding deposited Ni-based coatings. Surf Coat Technol. 2016;294:122–130. doi: 10.1016/j.surfcoat.2016.03.083
  • Andrzej C, Malgorzata P, Diana W, et al. Membranes’ porosity evaluation by computer-aided analysis of SEM images-a preliminary study. Biocybern Biomed Eng. 2012;32(4):65–75. doi: 10.1016/S0208-5216(12)70050-5
  • Zhang B, Li YT, Bai Q. Defect formation mechanisms in selective laser melting: A review. Chin J Mech Eng-En. 2017;30(3):515–527. doi: 10.1007/s10033-017-0121-5
  • Barin I, Sauert F, Schultze-Rhonhof E, et al. Thermochemical data of pure substances. Weinheim: VCH; 1989.
  • Gong HJ, Rafi K, Gu HF, et al. Analysis of defect generation in Ti–6Al–4 V parts made using powder bed fusion additive manufacturing processes. Addit Manuf. 2014;1-4:87–98. doi: 10.1016/j.addma.2014.08.002
  • Haboudou A, Peyre P, Vannes AB, et al. Reduction of porosity content generated during Nd: YAG laser welding of A356 and AA5083 aluminium alloys. Mater Sci Eng A. 2003;363(1-2):40–52. doi: 10.1016/S0921-5093(03)00637-3
  • Brückner F, Finaske T, Willner R, et al. Laser additive manufacturing with crack-sensitive materials. Laser Technik J. 2015;12(2):28–30. doi: 10.1002/latj.201500015
  • Gasser-Ing A, Dipl.-Ing GB, Kelbassa-Ing I, et al. Laser additive manufacturing. Laser Technik J. 2010;7(2):58–63. doi: 10.1002/latj.201090029
  • Chen CJ, Wang MC, Wang DS, et al. Laser cladding of Mg20Al80 powder on ZM5 magnesium alloy. Corros Eng Sci Technol. 2007;42(2):130–136. doi: 10.1179/174327807X196852
  • Ghasemi R, Elmquist L, Svensson H, et al. Mechanical properties of solid solution-strengthened CGI. Int J Cast Metal Res. 2016;29(1-2):98–105. doi: 10.1080/13640461.2015.1106781
  • Wang D, Song CH, Yang YQ, et al. Investigation of crystal growth mechanism during selective laser melting and mechanical property characterization of 316L stainless steel parts. Mater Des. 2016;100:291–299. doi: 10.1016/j.matdes.2016.03.111

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.