154
Views
1
CrossRef citations to date
0
Altmetric
Regular papers

In-situ VN reinforced powder metallurgy M30 steels prepared from water atomized powers via pressureless sintering

, , , , ORCID Icon &
Pages 43-53 | Received 07 Oct 2019, Accepted 09 Jan 2020, Published online: 26 Jan 2020

References

  • Mesquita RA, Barbosa CA. High-speed steels produced by conventional casting, spray forming and powder metallurgy. Mater Sci Forum. 2005;498–499:244–250. doi: 10.4028/www.scientific.net/MSF.498-499.244
  • Sustarsic B, Kosec L, Jenko M, et al. Vacuum sintering of water-atomised HSS powders with MoS2 additions. Vacuum. 2001;61:471–477. doi: 10.1016/S0042-207X(01)00161-0
  • Sustarsic B, Kosec L, Kosec M, et al. The influence of MoS2 additions on the densification of water-atomized HSS powders. J Mater Process Technol. 2006;173:291–300. doi: 10.1016/j.jmatprotec.2005.04.122
  • Škapin SD, Jenko M, Leskovšek V, et al. Characterization of the carbides and the martensite phase in powder-metallurgy high-speed steel. Mater Charact. 2010;61:452–458. doi: 10.1016/j.matchar.2010.02.003
  • Zhang X, Liu W, Sun D, et al. The transformation of carbides during austenization and its effect on the wear resistance of high speed steel rolls. Metall Mater Trans A. 2007;38:499–505. doi: 10.1007/s11661-006-9071-8
  • Ding P, Shi G, Zhou S. As-cast carbides in high-speed steels. Metall Mater Trans A. 1993;24:1265–1272. doi: 10.1007/BF02668195
  • Zhang L, Zhang X, Li L, et al. Evolution of the microstructure and mechanical properties of powder metallurgical high-speed steel S390 after heat treatment. J Alloys Compd. 2017;740:766–773.
  • Grinder O. The HIP way to make cleaner, better steels. Met Powder Rep. 2007;62:16-18. doi: 10.1016/S0026-0657(07)70190-X
  • Wright CS, Ogel B. Supersolidus sintering of high speed steels: part 1: sintering of molybdenum based alloys. Powder Metall. 1993;36:213–219. doi: 10.1179/pom.1993.36.3.213
  • Wright CS, Ogel B, Lemoisson F, et al. Supersolidus sintering of high speed steels: part 2: sintering of tungsten based alloys. Powder Metall. 1995;38:221–229. doi: 10.1179/pom.1995.38.3.221
  • Zhang D, Li Z, Xie L, et al. Powder metallurgy of high speed-steel produced by solid state sintering and heat treatment. Int J Mater Res. 2015;106:870–876. doi: 10.3139/146.111239
  • Zhang QK, Jiang Y, Shen WJ, et al. Direct fabrication of high-performance high speed steel products enhanced by LaB6. Mater Des. 2016;112:469–478. doi: 10.1016/j.matdes.2016.09.044
  • Giménez S, Zubizarreta C, Trabadelo V, et al. Sintering behaviour and microstructure development of T42 powder metallurgy high speed steel under different processing conditions. Mater Sci Eng A. 2008;480:130–137. doi: 10.1016/j.msea.2007.06.082
  • Aguirre I, Gimenez S, Talacchia S, et al. Effect of nitrogen on supersolidus sintering of modified M35M high speed steel. Powder Metall. 1999;42:353–357. doi: 10.1179/003258999665701
  • Bolton JD, Gant AJ. Fracture in ceramic-reinforced metal matrix composites based on high-speed steel. J Mater Sci. 1998;33(4):939–953. doi: 10.1023/A:1004303609990
  • Bolton JD, Gant AJ. Microstructural development and sintering kinetics in ceramic reinforced high speed steel metal matrix composites. Powder Metall. 1997;40(2):143–151. doi: 10.1179/pom.1997.40.2.143
  • Gordo E, Velasco F, Antón N, et al. Wear mechanisms in high speed steel reinforced with (NbC)p and (TaC)p MMCs. Wear. 2000;239(2):251–259. doi: 10.1016/S0043-1648(00)00329-X
  • Pines ML, Bruck HA. Pressureless sintering of particle-reinforced metal-ceramic composites for functionally graded materials: part I. Porosity reduction models. Acta Mater. 2006;54:1457–1465. doi: 10.1016/j.actamat.2005.10.060
  • Chamberlain AL, Fahrenholtz WG, Hilmas GE. Pressureless sintering of zirconium diboride. J Am Ceram Soc. 2006;89:450–456. doi: 10.1111/j.1551-2916.2005.00739.x
  • Kim HC, Oh DY, Shon IJ. Sintering of nanophase WC-15vol.%Co hard metals by rapid sintering process. Int J Refract Met Hard Mater. 2004;22:197–203. doi: 10.1016/j.ijrmhm.2004.06.006
  • Trabadelo V, Giménez S, Iturriza I. Microstructural characterisation of vacuum sintered T42 powder metallurgy high-speed steel after heat treatments. Mater Sci Eng A. 2009;499:360–367. doi: 10.1016/j.msea.2008.08.043
  • Godec M, Večko Pirtovšek T, Šetina Batič B, et al. Surface and bulk carbide transformations in high-speed steel. Sci Rep. 2015;5:1–11. doi: 10.1038/srep16202
  • Gimenez S, Iturriza I. Microstructural characterisation of powder metallurgy M35MHV HSS as a function of the processing route. J Mater Process Technol. 2003;143–144:555–560. doi: 10.1016/S0924-0136(03)00359-5
  • Xu HX, Zhu WL, Jiang JQ, et al. Refining carbide dimensions in AISI M2 high speed steel by increasing solidification rates and spheroidising heat treatment. J Mater Sci Technol. 2013;30:116–122.
  • Hetzner DW. Refining carbide size distributions in M1 high speed steel by processing and alloying. Mater Charact. 2001;46:175–182. doi: 10.1016/S1044-5803(01)00121-8
  • Huang PY. Powder metallurgy. Beijing: Metallurgical Industry Press; 1997.
  • Gan Y. Iron and steel materials engineering. Beijing: Chemical Industry press; 2005.
  • Gomes MA, Wronski AS, Wright CS. Fracture behaviour of a highly alloyed high speed steel. Fatigue Fract Eng M. 2007;18(1):1–18. doi: 10.1111/j.1460-2695.1995.tb00137.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.