222
Views
9
CrossRef citations to date
0
Altmetric
Regular papers

Synthesis and characterisation of Ti6Al4V/xTa alloy processed by solid state sintering

ORCID Icon, , , , & ORCID Icon
Pages 64-74 | Received 25 Oct 2019, Accepted 19 Jan 2020, Published online: 27 Jan 2020

References

  • Turssi CP, de Moraes Purquerio B, Serra MC. Wear of dental resin composites: insights into underlying processes and assessment methods—a review. J Biomed Mater Res B. 2003;65(2):280–285. doi: 10.1002/jbm.b.10563
  • Kim Y, Kim EP, Song YB, et al. Microstructure and mechanical properties of hot isostatically pressed Ti–6Al–4 V alloy. J Alloys Compd. 2014;603:207–212. doi: 10.1016/j.jallcom.2014.03.022
  • Božić D, Cvijović I, Vilotijević MN, et al. The influence of microstructural characteristics on the mechanical properties of Ti6Al4 V alloy produced by the powder metallurgy technique. J Serb Chem Soc. 2006;71(8–9):985–992. doi: 10.2298/JSC0609985B
  • Bandyopadhyay A, Espana F, Balla VK, et al. Influence of porosity on mechanical properties and in vivo response of Ti6Al4 V implants. Acta Biomater. 2010;6(4):1640–1648. doi: 10.1016/j.actbio.2009.11.011
  • Souza JC, Henriques M, Teughels W, et al. Wear and corrosion interactions on titanium in oral environment: literature review. J Bio Tribo-Corros. 2015;1(2):1–13. doi: 10.1007/s40735-015-0013-0
  • Souza JCM, Barbosa SL, Ariza E, et al. Simultaneous degradation by corrosion and wear of titanium in artificial saliva containing fluorides. Wear. 2012;292:82–88. doi: 10.1016/j.wear.2012.05.030
  • Bahraminasab M, Sahari BB, Edwards KL, et al. Aseptic loosening of femoral components – a review of current and future trends in materials used. Mater Des. 2012;42:459–470. doi: 10.1016/j.matdes.2012.05.046
  • Niinomi M, Nakai M. Titanium-based biomaterials for preventing stress shielding between implant devices and bone. Int J Biomater. 2011;2011:1–10. doi: 10.1155/2011/836587
  • Cabezas-Villa JL, Lemus-Ruiz J, Bouvard D, et al. Sintering study of Ti6Al4 V powders with different particle sizes and their mechanical properties. Int J Min Met Mater. 2018;25(12):1389–1401. doi: 10.1007/s12613-018-1693-5
  • Torres-Sanchez C, McLaughlin J, Fotticchia A. Porosity and pore size effect on the properties of sintered Ti35Nb4Sn alloy scaffolds and their suitability for tissue engineering applications. J Alloys Compd. 2018;731:189–199. doi: 10.1016/j.jallcom.2017.10.026
  • Torres Y, Lascano S, Bris J, et al. Development of porous titanium for biomedical applications: a comparison between loose sintering and space-holder techniques. Mater Sci Eng C. 2014;37:148–155. doi: 10.1016/j.msec.2013.11.036
  • Cabezas-Villa JL, Olmos L, Bouvard D, et al. Processing and properties of highly porous Ti6Al4 V mimicking human bones. J Mater Res. 2018;33(6):650–661. doi: 10.1557/jmr.2018.35
  • Correa DRN, Kuroda PAB, Lourenço ML, et al. Development of Ti-15Zr-Mo alloys for applying as implantable biomedical devices. J Alloys Compd. 2018;749:163–171. doi: 10.1016/j.jallcom.2018.03.308
  • Lee CK. Fabrication, characterization and wear corrosion testing of bioactive hydroxyapatite/nano-TiO 2 composite coatings on anodic Ti–6Al–4 V substrate for biomedical applications. Mater Sci Eng B. 2012;177(11):810–818. doi: 10.1016/j.mseb.2012.03.034
  • Chang J-K, Chen CH, Huang KY, et al. Eight-year results of hydroxyapatite-coated hip arthroplasty. J Arthroplasty. 2006;21(4):541–546. doi: 10.1016/j.arth.2005.04.043
  • Arifin A, Sulong AB, Muhamad N, et al. Material processing of hydroxyapatite and titanium alloy (HA/Ti) composite as implant materials using powder metallurgy: a review. Mater Des. 2014;55:165–175. doi: 10.1016/j.matdes.2013.09.045
  • Thian E, Loh NH, Khor KA, et al. Microstructures and mechanical properties of powder injection molded Ti-6Al-4V/HA powder. Biomaterials. 2002;23(14):2927–2938. doi: 10.1016/S0142-9612(01)00422-7
  • Ning C, Zhou Y. In vitro bioactivity of a biocomposite fabricated from HA and Ti powders by powder metallurgy method. Biomaterials. 2002;23(14):2909–2915. doi: 10.1016/S0142-9612(01)00419-7
  • Rahman HSA, Choudhury D, Osman NAA, et al. In vivo and in vitro outcomes of alumina, zirconia and their composited ceramic-on-ceramic hip joints. J Ceram Soc Jpn. 2013;121(1412):382–387. doi: 10.2109/jcersj2.121.382
  • Matsuno H, Yokoyama A, Watari F, et al. Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium. Biomaterials. 2001;22(11):1253–1262. doi: 10.1016/S0142-9612(00)00275-1
  • Liu Y, Bao C, Wismeijer D, et al. The physicochemical/biological properties of porous tantalum and the potential surface modification techniques to improve its clinical application in dental implantology. Mater Sci Eng C. 2015;49:323–329. doi: 10.1016/j.msec.2015.01.007
  • Silva R, Walls M, Rondot B, et al. Electrochemical and microstructural studies of tantalum and its oxide films for biomedical applications in endovascular surgery. J Mater Sci Mater Med. 2002;13(5):495–500. doi: 10.1023/A:1014779008598
  • Black J. Biologic performance of tantalum. Clin Mater. 1994;16(3):167–173. doi: 10.1016/0267-6605(94)90113-9
  • Rahmati B, Sarhan AA, Basirun WJ, et al. Ceramic tantalum oxide thin film coating to enhance the corrosion and wear characteristics of Ti 6Al 4V alloy. J Alloys Compd. 2016;676:369–376. doi: 10.1016/j.jallcom.2016.03.188
  • Xu G, Shen X, Hu Y, et al. Fabrication of tantalum oxide layers onto titanium substrates for improved corrosion resistance and cytocompatibility. Surf Coat Technol. 2015;272:58–65. doi: 10.1016/j.surfcoat.2015.04.024
  • Wu CY, Xin YH, Wang XF, et al. Effects of Ta content on the phase stability and elastic properties of β Ti–Ta alloys from first-principles calculations. Solid State Sci. 2010;12(12):2120–2124. doi: 10.1016/j.solidstatesciences.2010.09.009
  • Liu Y, Li K, Wu H, et al. Synthesis of Ti-Ta alloys with dual structure by incomplete diffusion between elemental powders. J Mech Behav Biomed Mater. 2015;51:302–312. doi: 10.1016/j.jmbbm.2015.07.004
  • Balla VK, Banerjee S, Bose S, et al. Direct laser processing of a tantalum coating on titanium for bone replacement structures. Acta Biomater. 2010;6(6):2329–2334. doi: 10.1016/j.actbio.2009.11.021
  • Gill P, Munroe N, Pulletikurthi C, et al. Effect of manufacturing process on the biocompatibility and mechanical properties of Ti-30Ta alloy. J Mater Eng Perform. 2011;20(4):819–823. doi: 10.1007/s11665-011-9874-7
  • Yamabe Y, Umeda J, Imai H, et al. Tribological property of α- pure titanium strengthened by nitrogen solid-solution. Mater Trans. 2018;59(1):61–65. doi: 10.2320/matertrans.Y-M2017842
  • Das K, Das S. A review of the Ti-Al-Ta (titanium-aluminum-tantalum) system. J Phase Equilib Diff. 2005;26:322–329. doi: 10.1007/s11669-005-0081-9
  • Park Y, Butt DP. Composition dependence of the kinetics and mechanisms of thermal oxidation of titanium-tantalum alloys. Oxid Met. 1999;51(5–6):383–402. doi: 10.1023/A:1018883009343
  • Langenkämper D, Paulsen A, Somsen C, et al. On the Oxidation behavior and its influence on the martensitic transformation of Ti–Ta high-temperature shape memory alloys. Shape Memory Superelasticity. 2019;5(1):63–72. doi: 10.1007/s40830-018-00206-1
  • Xu X, Nash P. Sintering mechanisms of Armstrong prealloyed Ti–6Al–4V powders. Mater Sci Eng A. 2014;607:409–416. doi: 10.1016/j.msea.2014.03.045
  • Chávez J, Olmos L, Jiménez O, et al. Sintering behaviour and mechanical characterisation of Ti64/x TiN composites and bilayer components. Powder Metall. 2017;60(4):257–266. doi: 10.1080/00325899.2017.1280585
  • Luzhnikov LP, Novikova VM, Mareev AP. Solubility of β-stabilizers in α-titanium. Met Sci Heat Treat. 1963;5:78–81. doi: 10.1007/BF00650694
  • Vázquez-Gómez O, Gallegos-Pérez AI, López-Martínez E, et al. Criteria for the dilatometric analysis to determine the transformation kinetics during continuous heating. J Therm Anal Calorim. 2019;135(6):2985–2993. doi: 10.1007/s10973-018-7449-7
  • Dercz G, Matuła I, Zubko M, et al. Synthesis of porous Ti–50Ta alloy by powder metallurgy. Mater Charact. 2018;142:124–136. doi: 10.1016/j.matchar.2018.05.033
  • Chávez J, Jiménez Alemán O, Flores Martínez M, et al. Characterization of Ti6Al4V–Ti6Al4V/30Ta bilayer components processed by powder metallurgy for biomedical applications. Met Mater Int. 2019: 1–16. DOI:10.1007/s12540-019-00326-y.
  • Kim HY, Miyazaki S. Martensitic transformation and superelastic properties of Ti-Nb Base alloys. Mater Trans. 2015;56:625–634. doi: 10.2320/matertrans.M2014454
  • Höglund L, Ågren J. Analysis of the Kirkendall effect, marker migration and pore formation. Acta Mater. 2001;49(8):1311–1317. doi: 10.1016/S1359-6454(01)00054-4
  • He YH, Jiang Y, Xu NP, et al. Fabrication of Ti–Al micro/nanometer-sized porous alloys through the Kirkendall effect. Adv Mater. 2007;19(16):2102–2106. doi: 10.1002/adma.200602398
  • Zhou YL, Niinomi M. Ti–25ta alloy with the best mechanical compatibility in Ti–Ta alloys for biomedical applications. Mater Sci Eng C. 2009;29(3):1061–1065. doi: 10.1016/j.msec.2008.09.012
  • Xu S, Liu Y, Yang C, et al. Compositionally gradient Ti-Ta metal-metal composite with ultra-high strength. Mater Sci Eng A. 2018;712:386–393. doi: 10.1016/j.msea.2017.11.089
  • Buenconsejo PJS, Kim HY, Miyazaki S. Novel β-TiTaAl alloys with excellent cold workability and a stable high-temperature shape memory effect. Scripta Mater. 2011;64(12):1114–1117. doi: 10.1016/j.scriptamat.2011.03.004
  • Gordin DM, Delvat E, Chelariu R, et al. Characterization of Ti-Ta alloys Synthesized by cold Crucible Levitation melting. Adv Eng Mater. 2008;10(8):714–719. doi: 10.1002/adem.200800041
  • Fan Z. 3 moduli of Ti-6Al-4V alloys. Scripta Metall Mater. 1993;29(11):1427–1432. doi: 10.1016/0956-716X(93)90331-L
  • Zhou YL, Niinomi M. Microstructures and mechanical properties of Ti–50 mass% Ta alloy for biomedical applications. J Alloys Compd. 2008;466(1–2):535–542. doi: 10.1016/j.jallcom.2007.11.090
  • Hao YL, Yang R, Niinomi M, et al. Young’s modulus and mechanical properties of Ti-29Nb-13Ta-4.6 Zr in relation to α ″martensite. Metall Mater Trans A. 2002;33(10):3137–3144. doi: 10.1007/s11661-002-0299-7
  • Long M, Rack HJ. Titanium alloys in total joint replacement—a materials science perspective. Biomaterials. 1998;19(18):1621–1639. doi: 10.1016/S0142-9612(97)00146-4
  • Niinomi M. Mechanical properties of biomedical titanium alloys. Mater Sci Eng A. 1998;243(1–2):231–236. doi: 10.1016/S0921-5093(97)00806-X
  • Chávez J, Olmos L, Bouvard D. Synthesis and characterization of shape memory porous Ti6Al4V/Ta components for bone implant applications. Manuscript refereed by Prof Dr Efrain Carreño-Morelli. Proceedings of the Euro PM2019 – Materials for Biomedical Applications. 2019. p. 1–6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.